Skip to main content
Log in

Kinetic and mesoscopic non-equilibrium description of the Ca2+ pump: a comparison

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

We analyse the operation of the Ca2+-ATPase ion pump using a kinetic cycle diagram. Using the methodology of Hill, we obtain the cycle fluxes, entropy production and efficiency of the pump. We compare these results with a mesoscopic non-equilibrium description of the pump and show that the kinetic and mesoscopic pictures are in accordance with each other. This gives further support to the mesoscopic theory, which is less restricted and also can include the heat flux as a variable. We also show how motors can be characterised in terms of unidirectional backward fluxes. We proceed to show how the mesoscopic approach can be used to identify fast and slow steps of the model in terms of activation energies, and how this can be used to simplify the kinetic diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Forty-five structures have been deposited in the Protein Data Bank, with the identification codes 1FQU, 1IWO, 1KJU, 1SU4, 1T5S, 1T5T, 1VFP, 1WPE, 1WPG, 1XP5, 2AGV, 2BY4, 2C88, 2C8K, 2C8L, 2C9M, 2DQS, 2EAR, 2EAS, 2EAT, 2EAU, 2O9J, 2OA0, 2Z9R, 2ZBD, 2ZBE, 2ZBF, 2ZBG, 3AR2, 3AR3, 3AR4, 3AR5, 3AR6, 3AR7, 3AR8, 3AR9, 3B9B, 3B9R, 3BA6, 3FGO, 3FPB, 3FPS, 3NAL, 3NAM and 3NAN.

References

  • Alberty RA (2003) Thermodynamics of the hydrolysis of adenosine triphosphate as a function of temperature, pH, pMg, and ionic strength. J Phys Chem B 107:12324–12330

    CAS  Google Scholar 

  • Alberty RA, Goldberg RN (1992) Standard thermodynamic formation properties for the adenosine 5’-triphosphate series. Biochemistry 31:10610–10615

    Article  PubMed  CAS  Google Scholar 

  • Alonso GL, González DA, Takara D, Ostuni MA, Sánchez GA (2001) Kinetic analysis of a model of the sarcoplasmic reticulum Ca-ATPase, with variable stoichiometry, which enhances the amount and the rate of Ca transport. J Theor Biol 208:251–260

    Article  PubMed  CAS  Google Scholar 

  • Apell HJ (2004) How do P-Type ATPases transport ions? Bioelectrochemistry 63:149–156

    Article  PubMed  CAS  Google Scholar 

  • Arruda AP, da Silva WS, Carvalho DP, de Meils L (2003) Hyperthyroidism increases the uncoupled ATPase activity and heat production by the sarcoplasmic reticulum Ca2+-ATPase. Biochem J 375:753–760

    Article  PubMed  CAS  Google Scholar 

  • Barata H, de Meis L (2002) Uncoupled ATP hydrolysis and thermogenic activity of the sarcoplasmic reticulum Ca2+-ATPase: coupling effects of dimethyl sulfoxide and low temperature. J Biol Chem 277:16868–16872

    Article  PubMed  CAS  Google Scholar 

  • Bedeaux D, Kjelstrup S (2008) The measurable heat flux that accompanies active transport by Ca2+-ATPase. Phys Chem Chem Phys 10:7304–7317

    Article  PubMed  CAS  Google Scholar 

  • Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry, 5th edn. W.H. Freeman, New York

    Google Scholar 

  • de Meis L (2001a) Role of the sarcoplasmic reticulum Ca2+-ATPase on heat production and thermogenesis. Biosci Rep 21:113–137

    Article  PubMed  Google Scholar 

  • de Meis L (2001b) Uncoupled ATPase activity and heat production by the sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem 276:25078–25087

    Article  PubMed  Google Scholar 

  • de Meis L (2002) Ca2+-ATPases (SERCA): energy transduction and heat production in transport ATPases. J Membrane Biol 188:1–9

    Article  Google Scholar 

  • de Meis L (2003) Brown adipose tissue Ca2+-ATPase uncoupled ATP hydrolysis and thermogenic activity. J Biol Chem 278:41856–41861

    Article  PubMed  Google Scholar 

  • de Meis L, Bianconi ML, Suzano VA (1997) Control of energy fluxes by the sarcoplasmic reticulum Ca2+-ATPase: ATP hydrolysis, ATP synthesis and heat production. FEBS Lett 406:201–204

    Article  PubMed  Google Scholar 

  • de Meis L, Oliveira GM, Arruda AP, Santos R, da Costa RM, Benchimol M (2005) The thermogenic activity of rat brown adipose tissue and rabbit white muscle Ca2+-ATPase. IUBMB Life 57:337–345

    Article  PubMed  Google Scholar 

  • Froud RJ, Lee AG (1986) A model for the phosphorylation of the Ca2+ + Mg2+-activated ATPase by phosphate. Biochem J 237:207–215

    PubMed  CAS  Google Scholar 

  • Garrett RH, Grisham CM (2010) Biochemistry, 4th edn. Brooks Cole, Boston

    Google Scholar 

  • Gould GW, East JM, Froud RJ, McWhirter JM, Stefanova HI, Lee AG (1986) A kinetic model for the Ca2+ + Mg2+-activated ATPase of sarcoplasmic reticulum. Biochem J 237:217–227

    PubMed  CAS  Google Scholar 

  • Hasselbach W, Makinose M (1961) Die Calciumpumpe der "Erschlaffungsgrana” des Muskels und ihre Abhängigkeit von der ATP-Spaltung. Biochem Z 333:518–528

    PubMed  CAS  Google Scholar 

  • Haynes DH, Mandveno A (1987) Computer modeling of Ca2+ pump function of Ca2+ − Mg2+-ATPase of sarcoplasmic reticulum. Physiol Rev 67:244–284

    PubMed  CAS  Google Scholar 

  • Hill TL (1982) The linear Onsager coefficients for biochemical kinetic diagrams as equilibrium one-way cycle fluxes. Nature 299:84–86

    Article  CAS  Google Scholar 

  • Hill TL (1989) Free energy transduction and biochemical cycle kinetics. Springer, New York

    Book  Google Scholar 

  • Jensen AML, Sørensen TLM, Olesen C, Møller JV, Nissen P (2006) Modulatory and catalytic modes of ATP binding by the calcium pump. EMBO J 25:2305–2314

    Article  PubMed  Google Scholar 

  • Kanazawa T, Yamada S, Yamamoto T, Tonomura Y (1971) Reaction mechanism of the Ca2+-dependent ATPase of sarcoplasmic reticulum from skeletal muscle: V. vectorial requirements for calcium and magnesium ions of three partial reactions of ATPase: formation and decomposition of a phosphorylated intermediate and ATP-formation from ADP and the intermediate. J Biochem (Tokyo) 70:95–123

    CAS  Google Scholar 

  • Kjelstrup S, Bedeaux D (2008) Non-equilibrium thermodynamics of heterogeneous systems. World Scientific, Singapore

    Book  Google Scholar 

  • Kjelstrup S, Rubi JM, Bedeaux D (2005) Active transport: a kinetic description based on thermodynamic grounds. J Theor Biol 234:7–12

    Article  PubMed  CAS  Google Scholar 

  • Kjelstrup S, Rubi JM, Bedeaux D (2005) Energy dissipation in slipping biological pumps. Phys Chem Chem Phys 7:4009–4018

    Article  PubMed  CAS  Google Scholar 

  • Kjelstrup S, de Meis L, Bedeaux D, Simon JM (2008) Is the Ca2+-ATPase from sarcoplasmic reticulum also a heat pump? Eur Biophys J 38:59–67

    Article  PubMed  CAS  Google Scholar 

  • Kjelstrup S, Barragán D, Bedeaux D (2009) Coefficients for active transport and thermogenesis of Ca2+-ATPase isoforms. Biophys J 96:4368–4376

    Article  Google Scholar 

  • Kjelstrup S, Bedeaux D, Johannessen E, Gross J (2010) Non-equilibrium thermodynamics for engineers. World Scientific, Singapore

    Google Scholar 

  • Kodama T, Kurebayashi N, Harafuji H, Ogawa Y (1982) Calorimetric evidence for large entropy changes accompanying intermediate steps of the ATP-driven Ca2+ uptake by sarcoplasmic reticulum. J Biol Chem 257:4238–4241

    PubMed  CAS  Google Scholar 

  • Kühlbrandt W (2004) Biology, structure and mechanism of P-type ATPases. Nat Rev Mol Cell Biol 5:282–295

    Article  PubMed  Google Scholar 

  • Laursen M, Bublitz M, Moncoq K, Olesen C, Møller JV, Young HS, Nissen P, Morth JP (2009) Cyclopiazonic acid is complexed to a divalent metal ion when bound to the sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem 284:13513–13518

    Article  PubMed  CAS  Google Scholar 

  • Lee AG, East JM (2001) What the structure of a calcium pump tells us about its mechanism. Biochem J 356:665–683

    Article  PubMed  CAS  Google Scholar 

  • Mahmmoud YA (2008) Capsaicin stimulates uncoupled ATP hydrolysis by the sarcoplasmic reticulum calcium pump. J Biol Chem 283:21418–21426

    Article  PubMed  CAS  Google Scholar 

  • Mall S, Broadbridge R, Harrison SL, Gore MG, Lee AG, East JM (2006) The presence of sarcolipin results in increased heat production by Ca2+-ATPase. J Biol Chem 281:36597–36602

    Article  PubMed  CAS  Google Scholar 

  • McWhirter JM, Gould GW, East JM, Lee AG (1987) A kinetic model for Ca2+ efflux mediated by the Ca2+ + Mg2+-activated ATPase of sarcoplasmic reticulum. Biochem J 245:713–721

    PubMed  CAS  Google Scholar 

  • Mintz E, Guillain F (1997) Ca2+ transport by the sarcoplasmic reticulum ATPase. Biochim Biophys Acta 1318:52–70

    Article  PubMed  CAS  Google Scholar 

  • Møller JV, Olesen C, Winther AML, Nissen P (2010) The sarcoplasmic Ca2+-ATPase: design of a perfect chemi-osmotic pump. Q Rev Biophys 43:501–566

    Article  PubMed  Google Scholar 

  • Moncoq K, Trieber CA, Young HS (2007) The molecular basis for cyclopiazonic acid inhibition of the sarcoplasmic reticulum calcium pump. J Biol Chem 282:9748–9757

    Article  PubMed  CAS  Google Scholar 

  • Nelson P (2003) Biological physics: energy, information, life. W.H. Freeman, New York

    Google Scholar 

  • Obara K, Miyashita N, Xu C, Toyoshima I, Sugita Y, Inesi G, Toyoshima C (2005) Structural role of countertransport revealed in Ca2+ pump crystal structure in the absence of Ca2+. Proc Natl Acad Sci USA 102:14489–14496

    Article  PubMed  CAS  Google Scholar 

  • Olesen C, Sørensen TLM, Nielsen RC, Møller JV, Nissen P (2004) Dephosphorylation of the calcium pump coupled to counterion occlusion. Science 306:2251–2255

    Article  PubMed  CAS  Google Scholar 

  • Olesen C, Picard M, Winther AML, Gyrup C, Morth JP, Oxvig C, Møller JV, Nissen P (2007) The structural basis of calcium transport by the calcium pump. Nature 450:1036–1042

    Article  PubMed  CAS  Google Scholar 

  • Olesen C, Picard M, Winther AML, Gyrup C, Morth JP, Oxvig C, Møller JV, Nissen P (2007) The structural basis of calcium transport by the calcium pump. Nature 450:1036–1042

    Article  PubMed  CAS  Google Scholar 

  • Peinelt C, Apell HJ (2004) Time-resolved charge movements in the sarcoplasmatic reticulum Ca-ATPase. Biophys J 86:815–824

    Article  PubMed  CAS  Google Scholar 

  • Peinelt C, Apell HJ (2005) Kinetics of Ca2+ binding to the SR Ca-ATPase in the E1 state. Biophys J 89:2427–2433

    Article  PubMed  CAS  Google Scholar 

  • Qian H (2005) Cycle kinetics, steady state thermodynamics and motors-a paradigm for living matter physics. J Phys Condens Matter 17:S3783–S3794

    Article  PubMed  CAS  Google Scholar 

  • Qian H (2007) Phosphorylation energy hypothesis: open chemical systems and their biological functions. Annu Rev Phys Chem 58:42–113

    Article  Google Scholar 

  • Qian H (2009) Entropy demystified the “thermo”-dynamics of stochastically fluctuating systems. Methods Enzymol 467:34–111

    Google Scholar 

  • Qian M, Zhang X, Wilson RJ, Feng J (2008) Efficiency of Brownian motors in terms of entropy production rate. EPL (Europhys Lett) 84(1):10014

    Article  Google Scholar 

  • Schatzmann HJ (1966) ATP-dependent Ca++-Extrusion from human red cells. Experientia 22:364–365

    Article  PubMed  CAS  Google Scholar 

  • Smith NP, Crampin EJ (2004) Development of models of active ion transport for whole-cell modelling: cardiac sodium–potassium pump as a case study. Prog Biophys Mol Biol 85:387–405

    Article  PubMed  CAS  Google Scholar 

  • Søhoel H, Jensen AML, Møller JV, Nissen P, Denmeade SR, Isaacs JT, Olsen CE, Christensen SB (2006) Natural products as starting materials for development of second-generation SERCA inhibitors targeted towards prostate cancer cells. Bioorg Med Chem 14:2810–2815

    Article  PubMed  Google Scholar 

  • Sørensen TLM, Møller JV, Nissen P (2004) Phosphoryl transfer and calcium ion occlusion in the calcium pump. Science 304:1672–1675

    Article  PubMed  Google Scholar 

  • Takahashi M, Kondou Y, Toyoshima C (2007) Interdomain communication in calcium pump as revealed in the crystal structures with transmembrane inhibitors. Proc Natl Acad Sci USA 104:5800–5805

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima C, Mizutani T (2004) Crystal structure of the calcium pump with a bound ATP analogue. Nature 430:529–535

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima C, Nomura H (2002) Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418:605–611

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima C, Nakasako M, Nomura H, Ogawa H (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405:647–655

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima C, Nomura H, Tsuda T (2004) Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues. Nature 432:361–368

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima C, Norimatsu Y, Iwasawa S, Tsuda T, Ogawa H (2007) How processing of aspartylphosphate is coupled to lumenal gating of the ion pathway in the calcium pump. Proc Natl Acad Sci USA 104:19831–19836

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima C, Yonekura SI, Tsueda J, Iwasawa S (2011) Trinitrophenyl derivatives bind differently from parent adenine nucleotides to Ca2+-ATPase in the absence of Ca2+. Proc Natl Acad Sci USA 108:1833–1838

    Article  PubMed  CAS  Google Scholar 

  • Tran K, Smith NP, Loiselle DS, Crampin EJ (2009) A thermodynamic model of the cardiac sarcoplasmic/endoplasmic Ca2+ (SERCA) pump. Biophys J 96:2029–2042

    Article  PubMed  CAS  Google Scholar 

  • Winther AML, Liu H, Sonntag Y, Olesen C, le Maire M, Soehoel H, Olsen CE, Christensen SB, Nissen P, Møller JV (2010) Critical roles of hydrophobicity and orientation of side chains for inactivation of sarcoplasmic reticulum Ca2+-ATPase with thapsigargin and thapsigargin analogs. J Biol Chem 285:28883–28892

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Rice WJ, He W, Stokes DL (2002) A structural model for the catalytic cycle of Ca2+-ATPase. J Mol Biol 316:201–211

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

A.L. would like to thank The Faculty of Natural Sciences and Technology, Norwegian University of Science and Technology, for a PhD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Lervik.

Appendix: Sum of directional diagrams for the kinetic cycle

Appendix: Sum of directional diagrams for the kinetic cycle

For completeness, we show how to obtain the terms in the expression for the sum of the directional diagrams for the complete kinetic cycle, using the methodology of Hill (1989). The first 14 terms are

$$ \begin{aligned} \sum &= k_{\text{BC}} k_{\text{CD}} k_{\text{DE}} k_{\text{EF}} k_{\text{FA}} + k_{\text{BA}} k_{\text{CD}} k_{\text{DE}} k_{\text{EF}} k_{\text{FA}}\\ &+ k_{\text{CB}} k_{\text{BA}} k_{\text{DE}} k_{\text{EF}} k_{\text{FA}} + k_{\text{DC}} k_{\text{CB}} k_{\text{BA}} k_{\text{EF}} k_{\text{FA}}\\ &+ k_{\text{ED}} k_{\text{DC}} k_{\text{CB}} k_{\text{BA}} k_{\text{FA}} + k_{\text{FE}} k_{\text{ED}} k_{\text{DC}} k_{\text{CB}} k_{\text{BA}}\\ &+ k_{\text{DB}} k_{\text{CB}} k_{\text{BA}} k_{\text{EF}} k_{\text{FA}} + k_{\text{ED}} k_{\text{DB}} k_{\text{CB}} k_{\text{BA}} k_{\text{FA}}\\ &+ k_{\text{FE}} k_{\text{ED}} k_{\text{DB}} k_{\text{CB}} k_{\text{BA}} + k_{\text{CB}} k_{\text{BD}} k_{\text{DE}} k_{\text{EF}} k_{\text{FA}}\\ &+ k_{\text{DB}} k_{\text{CB}} k_{\text{BA}} k_{\text{EF}} k_{\text{FA}} + k_{\text{ED}} k_{\text{DB}} k_{\text{CB}} k_{\text{BA}} k_{\text{FA}}\\ &+ k_{\text{FE}} k_{\text{ED}} k_{\text{DB}} k_{\text{CB}} k_{\text{BA}} + k_{\text{CB}} k_{\text{BD}} k_{\text{DE}} k_{\text{EF}} k_{\text{FA}}\\ &+ 70\,\rm{other\,terms}.\\ \end{aligned} $$
(40)

We consider the kinetic cycle given in Fig. 3 and the sum of directional diagrams of state A. By removing the line connecting states B and D, there are now six ways to remove a second line to create a partial diagram. This gives the first six terms.

By removing the line connecting states D and C, there are four ways to remove a second line to create partial diagrams not already considered. This gives the four next terms.

By removing the line connecting states B and C, there are four ways to remove a second line to create partial diagrams not already considered. This gives the four next terms.

By considering the remaining states in the same fashion, the remaining 5 × 14 = 70 terms can be obtained.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lervik, A., Bedeaux, D. & Kjelstrup, S. Kinetic and mesoscopic non-equilibrium description of the Ca2+ pump: a comparison. Eur Biophys J 41, 437–448 (2012). https://doi.org/10.1007/s00249-012-0797-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-012-0797-5

Keywords

Navigation