Skip to main content
Log in

Structures during binding of cAMP receptor to promoter DNA: promoter search slowed by non-specific sites

European Biophysics Journal Aims and scope Submit manuscript

Abstract

The kinetics of cAMP receptor (CAP) binding to promoter DNA has been studied by stopped-flow electric-dichroism at a reduced salt concentration, where the coupling of non-specific and specific binding can be observed directly. Amplitudes, rise and decay times of dichroism transients provide detailed information about the reaction and the structure of intermediates over more than six orders of magnitude on the time scale. CAP binding during the first milliseconds after mixing is indicated by an increase of both rise- and decay-time constants. A particularly large increase of rise times reflects initial formation of non-symmetric complexes by protein binding to non-specific sites at DNA ends. The increase of the hydrodynamic dimensions continues up to ~1 s, before a decrease of time constants reflects transition to compact states with bent DNA up to the time range of ~103 s. The slow approach to CAP-induced DNA bending is due to non-specific complexes, which are formed initially and are converted slowly to the specific complex. At the salt concentration of 13.5 mM, conversion to specific complexes with bent DNA is completed after ~40 s at pH 8 compared to >103 s at pH 7, resulting from a higher affinity of CAP to non-specific sites at pH 7 than 8 by a factor of ~100. Thus, under the given conditions non-specific sites delay rather than facilitate formation of the specific complex with bent DNA. Experimental data obtained for a non-specific DNA clearly indicate the impact of pseudo-sites. The different electro-optical parameters have been combined in global fits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arai M, Ito K, Inobe T, Nakao M, Maki K, Kamagata K, Kihara H, Amemiya Y, Kuwajima K (2002) Fast compaction of alpha-lactalbumin during folding studied by stopped-flow X-ray scattering. J Mol Biol 321(1):121–132. doi:10.1016/s0022-2836(02)00566-1

    Article  PubMed  CAS  Google Scholar 

  • Barkley MD (1981) Salt dependence of the kinetics of the lac repressor-operator interaction: role of non-operator deoxyribonucleic-acid in the association reaction. Biochemistry 20(13):3833–3842

    Article  PubMed  CAS  Google Scholar 

  • Berg OG, von Hippel PH (1988) Selection of DNA binding sites by regulatory proteins. II. The binding specificity of cyclic AMP receptor protein to recognition sites. J Mol Biol 200(4):709–723

    Article  PubMed  CAS  Google Scholar 

  • Berg OG, Winter RB, von Hippel PH (1981) Diffusion-driven mechanisms of protein translocation on nucleic-acids.1. Models and theory. Biochemistry 20(24):6929–6948

    Article  PubMed  CAS  Google Scholar 

  • Blazy B, Ullmann A (1986) Properties of cyclic AMP-independent catabolite gene activator proteins of Escherichia coli. J Biol Chem 261(25):11645–11649

    PubMed  CAS  Google Scholar 

  • Diekmann S, Hillen W, Morgeneyer B, Wells RD, Porschke D (1982) Orientation relaxation of DNA restriction fragments and the internal mobility of the double helix. Biophys Chem 15(4):263–270

    Article  PubMed  CAS  Google Scholar 

  • Ebright RH, Ebright YW, Gunasekera A (1989) Consensus DNA site for the Escherichia coli catabolite gene activator protein (cap)–cap exhibits a 450-fold higher affinity for the consensus DNA site than for the Escherichia coli lac DNA site. Nucleic Acids Res 17(24):10295–10305

    Article  PubMed  CAS  Google Scholar 

  • Fic E, Polit A, Wasylewski Z (2006) Kinetic and structural studies of the allosteric conformational changes induced by binding of cAMP to the cAMP receptor protein from Escherichia coli. Biochemistry 45(2):373–380. doi:10.1021/bi051586a

    Article  PubMed  CAS  Google Scholar 

  • Fic E, Bonarek P, Gorecki A, Kedracka-Krok S, Mikolajczak J, Polit A, Tworzydlo M, Dziedzicka-Wasylewska M, Wasylewski Z (2009) cAMP receptor protein from Escherichia coli as a model of signal transduction in proteins—a review. J Mol Microbiol Biotechnol 17(1):1–11. doi:10.1159/000178014

    Article  PubMed  CAS  Google Scholar 

  • Fredericq E, Houssier C (1973) Electric dichroism and electric birefringence. Monographs on physical biochemistry. Clarendon Press, Oxford

    Google Scholar 

  • Fried MG, Crothers DM (1984) Kinetics and mechanism in the reaction of gene regulatory proteins with DNA. J Mol Biol 172(3):263–282

    Article  PubMed  CAS  Google Scholar 

  • Ghosaini LR, Brown AM, Sturtevant JM (1988) Scanning calorimetric study of the thermal unfolding of catabolite activator protein from Escherichia coli in the absence and presence of cyclic mononucleotides. Biochemistry 27(14):5257–5261

    Article  PubMed  CAS  Google Scholar 

  • Giraudpanis MJ, Toulme F, Blazy B, Maurizot JC, Culard F (1994) Fluorescence study on the nonspecific-binding of cyclic-AMP receptor protein to DNA—effect of pH. Biochimie 76(2):133–139

    Article  CAS  Google Scholar 

  • Gomez-Hens A, Perez-Bendito D (1991) The stopped-flow technique in analytical-chemistry. Anal Chim Acta 242(2):147–177

    Article  CAS  Google Scholar 

  • Gorecki A, Kepys B, Bonarek P, Wasylewski Z (2009) Kinetic studies of cAMP-induced propagation of the allosteric signal in the cAMP receptor protein from Escherichia coli with the use of site-directed mutagenesis. Int J Biol Macromol 44(3):262–270. doi:10.1016/j.ijbiomac.2008.12.015

    Article  PubMed  CAS  Google Scholar 

  • Gorman J, Greene EC (2008) Visualizing one-dimensional diffusion of proteins along DNA. Nat Struct Mol Biol 15(8):768–774. doi:10.1038/Nsmb.1441

    Article  PubMed  CAS  Google Scholar 

  • Grillo I (2009) Applications of stopped-flow in SAXS and SANS. Curr Opin Colloid Interface Sci 14(6):402–408. doi:10.1016/j.cocis.2009.04.005

    Article  CAS  Google Scholar 

  • Guiso N, Blazy B (1980) Regulatory aspects of the cyclic amp receptor protein in Escherichia coli K-12. Biochem Biophys Res Commun 94(1):278–283

    Article  PubMed  CAS  Google Scholar 

  • Halford SE, Marko JF (2004) How do site-specific DNA-binding proteins find their targets? Nucleic Acids Res 32(10):3040–3052. doi:10.1093/nar/gkh624

    Article  PubMed  CAS  Google Scholar 

  • Hiller DA, Fogg JM, Martin AM, Beechem JM, Reich NO, Perona JJ (2003) Simultaneous DNA binding and bending by EcoRV endonuclease observed by real-time fluorescence. Biochemistry 42(49):14375–14385. doi:10.1021/Bi035520w

    Article  PubMed  CAS  Google Scholar 

  • Kahn JD, Crothers DM (1998) Measurement of the DNA bend angle induced by the catabolite activator protein using Monte Carlo simulation of cyclization kinetics. J Mol Biol 276(1):287–309

    Article  PubMed  CAS  Google Scholar 

  • Kapanidis AN, Ebright YW, Ludescher RD, Chan S, Ebright RH (2001) Mean DNA bend angle and distribution of DNA bend angles in the CAP-DNA complex in solution. J Mol Biol 312(3):453–468. doi:10.1006/jmbi.2001.4976

    Article  PubMed  CAS  Google Scholar 

  • Kleinschmidt C, Tovar K, Hillen W, Porschke D (1988) Dynamics of repressor operator recognition—the Tn10-encoded tetracycline resistance control. Biochemistry 27(4):1094–1104

    Article  PubMed  CAS  Google Scholar 

  • Kolb A, Busby S, Buc H, Garges S, Adhya S (1993) Transcriptional regulation by cAMP and its receptor protein. Ann Rev Biochem 62:749–795

    Article  PubMed  CAS  Google Scholar 

  • Kuzmic P (1996) Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase. Anal Biochem 237(2):260–273

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsov SV, Sugimura S, Vivas P, Crothers DM, Ansari A (2006) Direct observation of DNA bending/unbending kinetics in complex with DNA-bending protein IHF. Proc Natl Acad Sci USA 103(49):18515–18520. doi:10.1073/pnas.0608394103

    Article  PubMed  CAS  Google Scholar 

  • Lin SH, Lee JC (2002) Communications between the high-affinity cyclic nucleotide binding sites in E. coli cyclic AMP receptor protein: effect of single site mutations. Biochemistry 41(39):11857–11867

    Article  PubMed  CAS  Google Scholar 

  • Lin SH, Lee JC (2003) Determinants of DNA bending in the DNA-cyclic AMP receptor protein complexes in Escherichia coli. Biochemistry 42(17):4809–4818. doi:10.1021/bi027259+

    Article  PubMed  CAS  Google Scholar 

  • Parkinson G, Wilson C, Gunasekera A, Ebright YW, Ebright RE, Berman HM (1996) Structure of the CAP-DNA complex at 2.5 angstrom resolution: a complete picture of the protein-DNA interface. J Mol Biol 260(3):395–408

    Article  PubMed  CAS  Google Scholar 

  • Passner JM, Steitz TA (1997) The structure of a CAP-DNA complex having two cAMP molecules bound to each monomer. Proc Natl Acad Sci USA 94(7):2843–2847

    Article  PubMed  CAS  Google Scholar 

  • Pendergrast PS, Ebright YW, Ebright RH (1994) High-specificity DNA cleavage agent—design and application to kilobase and megabase DNA substrates. Science 265(5174):959–962

    Article  PubMed  CAS  Google Scholar 

  • Popovych N, Tzeng SR, Tonelli M, Ebright RH, Kalodimos CG (2009) Structural basis for cAMP-mediated allosteric control of the catabolite activator protein. Proc Natl Acad Sci USA 106(17):6927–6932

    Article  PubMed  CAS  Google Scholar 

  • Porschke D (1984) Dynamics of DNA condensation. Biochemistry 23(21):4821–4828

    Article  PubMed  CAS  Google Scholar 

  • Porschke D (1991) Persistence length and bending dynamics of DNA from electrooptical measurements at high salt concentrations. Biophys Chem 40(2):169–179

    Article  PubMed  CAS  Google Scholar 

  • Porschke D (1998) Time-resolved analysis of macromolecular structures during reactions by stopped-flow electrooptics. Biophys J 75(1):528–537

    Article  PubMed  CAS  Google Scholar 

  • Porschke D (2007) The nature of “unusual” electro-optical transients observed for DNA. Colloid Surface B 56(1–2):44–49. doi:10.1016/j.colsurfb.2006.11.020

    Article  CAS  Google Scholar 

  • Porschke D (2010) Allosteric control of promoter DNA bending by cyclic AMP Receptor and cyclic AMP. Biochemistry 49(26):5553–5559. doi:10.1021/Bi100542f

    Article  PubMed  CAS  Google Scholar 

  • Porschke D (2011) Electric birefringence at small angles from crossed position: enhanced sensitivity and special effects. J Phys Chem B 115(14):4177–4183. doi:10.1021/Jp111240e

    Article  PubMed  CAS  Google Scholar 

  • Porschke D, Antosiewicz JM (2007) Quantitative molecular electro-optics: macromolecular structures and their dynamics in solution. In: Stoylov SP, Stoimenova MV (eds) Molecular and colloidal electro-optics. CRC, Boca Raton, pp 59–107

    Google Scholar 

  • Porschke D, Jung M (1985) The conformation of single stranded oligonucleotides and of oligonucleotide-oligopeptide complexes from their rotation relaxation in the nanosecond time range. J Biomol Struct Dyn 2(6):1173–1184

    PubMed  CAS  Google Scholar 

  • Revzin A, von Hippel PH (1977) Direct measurement of association constants for binding of Escherichia coli lac repressor to non-operator DNA. Biochemistry 16(22):4769–4776

    Article  PubMed  CAS  Google Scholar 

  • Richter PH, Eigen M (1974) Diffusion controlled reaction-rates in spheroidal geometry—application to repressor-operator association and membrane-bound enzymes. Biophys Chem 2(3):255–263

    Article  PubMed  CAS  Google Scholar 

  • Riggs AD, Bourgeois S, Cohn M (1970) Lac repressor-operator interaction.3. Kinetic studies. J Mol Biol 53(3):401–417

    Article  PubMed  CAS  Google Scholar 

  • Schultz SC, Shields GC, Steitz TA (1991) Crystal structure of a CAP-DNA complex: The DNA is bent by 90°. Science 253(5023):1001–1007

    Article  PubMed  CAS  Google Scholar 

  • Sharma H, Yu SN, Kong JL, Wang JM, Steitz TA (2009) Structure of apo-CAP reveals that large conformational changes are necessary for DNA binding. Proc Natl Acad Sci USA 106(39):16604–16609. doi:10.1073/pnas.0908380106

    Article  PubMed  CAS  Google Scholar 

  • Sugimura S, Crothers DM (2006) Stepwise binding and bending of DNA by Escherichia coli integration host factor. Proc Natl Acad Sci USA 103(49):18510–18514. doi:10.1073/pnas.0608337103

    Article  PubMed  CAS  Google Scholar 

  • Tims HS, Widom J (2007) Stopped-flow fluorescence resonance energy transfer for analysis of nucleosome dynamics. Methods 41(3):296–303. doi:10.1016/j.ymeth.2007.01.001

    Article  PubMed  CAS  Google Scholar 

  • Tworzydlo M, Polit A, Mikolajczak J, Wasylewski Z (2005) Fluorescence quenching and kinetic studies of conformational changes induced by DNA and cAMP binding to cAMP receptor protein from Escherichia coli. FEBS J 272(5):1103–1116. doi:10.1111/j.1742.4658.2005.04540.x

    Article  PubMed  CAS  Google Scholar 

  • Van Nuland NAJ, Forge V, Balbach J, Dobson CM (1998) Real-time NMR studies of protein folding. Acc Chem Res 31(11):773–780

    Article  Google Scholar 

  • von Hippel PH, Berg OG (1989) Facilitated target location in biological-systems. J Biol Chem 264(2):675–678

    Google Scholar 

  • Weber IT, Steitz TA (1984) A model for the non-specific binding of catabolite gene activator protein to DNA. Nucleic Acids Res 12(22):8475–8487

    Article  PubMed  CAS  Google Scholar 

  • Winter RB, Berg OG, von Hippel PH (1981) Diffusion-driven mechanisms of protein translocation on nucleic-acids. 3. The Escherichia coli lac repressor-operator interaction: kinetic measurements and conclusions. Biochemistry 20(24):6961–6977

    Article  PubMed  CAS  Google Scholar 

  • Zubay G (1980) The isolation and properties of CAP, the catabolite gene activator. Methods Enzymol 65:856–877

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The facilities of the Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen were used for data processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Porschke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porschke, D. Structures during binding of cAMP receptor to promoter DNA: promoter search slowed by non-specific sites. Eur Biophys J 41, 415–424 (2012). https://doi.org/10.1007/s00249-012-0791-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-012-0791-y

Keywords

Navigation