Skip to main content
Log in

Stability and folding dynamics of polyglutamic acid

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The thermal stability and folding dynamics of polyglutamic acid were studied by equilibrium circular dichroism (CD), Fourier-transform infrared (FTIR), and time-resolved temperature-jump infrared (IR) spectroscopy. Polyglutamic acid (PGA) forms α-helical peptides in aqueous solution and is an ideal model system to study the helix–coil transition. Melting curves were monitored with CD and FTIR as a function of pD. At low pD, PGA aggregates at temperatures above 323 K, whereas at pD >5, unfolding and refolding are reversible. At pD 5.4, a helix–coil transition occurs with a transition temperature T m of 307 K. At slightly higher pD of 6.2, the peptide conformation is already in a coil structure and only small conformational changes occur upon heating. We determined the equilibrium constant for the reversible helix–coil transition at pD 5.4. The dynamics of this transition was measured at single IR wavelengths after a nanosecond laser-excited temperature jump of ∆T ~ 10 K. Relaxation constants decreased with increasing peptide temperature. Folding and unfolding rates as well as activation energies were extracted based on a two-state model. Our study shows how equilibrium and time-resolved infrared spectroscopic data can be combined to characterize a structural transition and to analyze folding mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PGA:

Polyglutamic acid

T-jump:

Temperature jump

FTIR:

Fourier-transform infrared

CD:

Circular dichroism

References

  • Abbruzzetti S, Viappiani C, Small JR, Libertini LJ, Small EW (2000) Kinetics of local helix formation in poly-l-glutamic acid studied by time-resolved photoacoustics: neutralization reactions of carboxylates in aqueous solutions and their relevance to the problem of protein folding. Biophys J 79:2714–2721

    Article  PubMed  CAS  Google Scholar 

  • Allen DL, Pielak GJ (1998) Baseline length and automated fitting of denaturation data. Protein Sci 7:1262–1263

    Article  PubMed  CAS  Google Scholar 

  • Anfinrud PA, Han C, Hochstrasser RM (1989) Direct observation of ligand dynamics in hemoglobin by subpicosecond infrared spectroscopy. Proc Natl Acad Sci 86:8387–8391

    Article  PubMed  CAS  Google Scholar 

  • Ballew RM, Sabelko J, Reiner C, Gruebele M (1996) A single-sweep, nanosecond time resolution laser temperature-jump apparatus. Rev Sci Instrum 67:3694–3699

    Article  CAS  Google Scholar 

  • Barksdale AD, Stuehr JE (1972) Kinetics of the helix–coil transition in aqueous poly(l-glutamic acid). J Am Chem Soc 94:3334–3338

    Article  PubMed  CAS  Google Scholar 

  • Barth A, Zscherp C (2002) What vibrations tell us about proteins. Q Rev Biophys 35:369–430

    Article  PubMed  CAS  Google Scholar 

  • Bieri O, Kiefhaber T (2000) Kinetic models in protein folding. In: Pain RH (ed) Protein folding: frontiers in molecular biology. Oxford University Press, Oxford, pp 34–64

    Google Scholar 

  • Brodi F, Cametti C, Paradossi G (1999) Side-chain dynamics in poly(α-glutamate) and poly(γ-glutamate) aqueous solutions: a high-frequency dielectric investigation. Phys Chem Chem Phys 1:1555–1561

    Article  Google Scholar 

  • Byler DM, Susi H (1986) Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers 25:469–487

    Article  PubMed  CAS  Google Scholar 

  • Chirgadze YN, Brazhnikov EV (1974) Intensities and other spectral parameters of infrared amide bands of polypeptides in the α-helical form. Biopolymers 13:1701–1712

    Article  PubMed  CAS  Google Scholar 

  • Chirgadze YN, Brazhnikov EV, Nevskaya NA (1976) Intramolecular distortion of the α-helical structure of polypeptides. J Mol Biol 102:781–792

    Article  PubMed  CAS  Google Scholar 

  • Clarke DT, Doig AJ, Stapley BJ, Jones GR (1999) The α-helix folds on the millisecond time scale. Proc Natl Acad Sci 96:7232–7237

    Article  PubMed  CAS  Google Scholar 

  • Covington AK (1968) Use of the glass electrode in deuterium oxide and the relation between the standardized pD (paD) scale and the operational pH in heavy water. Anal Chem 40:700–706

    Article  CAS  Google Scholar 

  • Cummings AL, Eyring EM (1975) Helix-coil transition kinetics in aqueous poly(α, l-glutamic Acid). Biopolymers 14:2107–2114

    Article  CAS  Google Scholar 

  • Dimitriadis G, Drysdale A, Myers J, Arora P, Radford SE, Oas TG, Smith DA (2004) Microsecond folding dynamics of the F13W G29A mutant of the B domain of staphylococcal protein A by laser-induced temperature jump. Proc Natl Acad Sci 101:3809–3814

    Article  PubMed  CAS  Google Scholar 

  • Dyer RB, Maness SJ, Peterson ES, Franzen S, Fesinmeyer RM, Andersen NH (2004) The mechanism of β-hairpin formation. Biochemistry 43:11560–11566

    Article  PubMed  CAS  Google Scholar 

  • Genberg L, Heisel F, McLendon G, Dwayne Miller RJ (1987) Vibrational energy relaxation processes in heme proteins: model systems of vibrational energy dispersion in disordered systems. J Phys Chem 91:5521–5524

    Article  CAS  Google Scholar 

  • Gooding EA, Ramajo AP, Wang J, Palmer C, Fouts E, Volk M (2005) The effects of individual amino acids on the fast folding dynamics of α-helical peptides. Chem Commun 48:5985–5987

    Article  Google Scholar 

  • Hauser K, Krejtschi C, Huang R, Wu L, Keiderling TA (2008) Site-specific relaxation kinetics of a tryptophan zipper hairpin peptide using temperature-jump IR-spectroscopy and isotopic labeling. J Am Chem Soc 130:2984–2992

    Article  PubMed  CAS  Google Scholar 

  • Huang C-Y, Klemke JW, Getahun Z, DeGrado WF, Gai F (2001) Temperature-dependent helix–coil transition of an alanine based peptide. J Am Chem Soc 123:9235–9238

    Article  PubMed  CAS  Google Scholar 

  • Itoh K, Foxman BM, Fasman GD (1976) The two β-forms of poly(l-glutamic Acid). Biopolymers 15:419–455

    Article  PubMed  CAS  Google Scholar 

  • John DM, Weeks KM (2000) Van’t Hoff enthalpies without baselines. Protein Sci 9:1416–1419

    Article  PubMed  CAS  Google Scholar 

  • Kimura T, Takahashi S, Akiyama S, Uzawa T, Ishimori K, Morishima I (2002) Direct observation of the multistep helix formation of poly-l-glutamic acids. J Am Chem Soc 124:11596–11597

    Article  PubMed  CAS  Google Scholar 

  • Krejtschi C, Huang R, Keiderling TA, Hauser K (2008) Time-resolved temperature-jump infrared spectroscopy of peptides with well-defined secondary structure: a Trpzip β-hairpin variant as an example. Vib Spectrosc 48:1–7

    Article  CAS  Google Scholar 

  • Lednev IK, Karnoup AS, Sparrow MC, Asher SA (1999) α-helix peptide folding and unfolding activation barriers: a nanosecond UV resonance Raman study. J Am Chem Soc 121:8074–8086

    Article  CAS  Google Scholar 

  • Lumry R, Legare R, Miller WG (1964) The dynamics of the helix–coil transition in poly-α, l-glutamic Acid. Biopolymers 2:489–500

    Article  CAS  Google Scholar 

  • Myer YP (1969) The pH-induced helix–coil transition of poly-l-lysine and poly-l-glutamic acid and the 238-μm dichroic band. Macromolecules 2:624–628

    Article  CAS  Google Scholar 

  • Nolan B, Gooding E, Sharma S, Volk M (2005) The helix–coil transition in polyglumatic acid. Biophys J 88:34A

    Google Scholar 

  • Petty SA, Volk M (2004) Fast folding dynamics of an α-helical peptide with bulky side chains. Phys Chem Chem Phys 6:1022–1030

    Article  CAS  Google Scholar 

  • Ramajo AP, Petty SA, Volk M (2006) Fast folding dynamics of α-helical peptides—effect of solvent additives and pH. Chem Phys 323:11–23

    Article  Google Scholar 

  • Rucker AL, Pager CT, Campbell MN, Qualls JE, Creamer TP (2003) Host-guest scale of left-handed polyproline II helix formation. Proteins 53:68–75

    Article  PubMed  CAS  Google Scholar 

  • Sano T, Yasunaga T (1980) Kinetics of helix–coil transition of polypeptides in solution by the relaxation methods. Biophys Chem 11:377–386

    Article  PubMed  CAS  Google Scholar 

  • Schwarz G, Seelig J (1968) Kinetic properties of the electric field effect of the helix–coil transition of poly(γ-benzyl l-glutamate) determined from dielectric relaxation measurements. Biopolymers 6:1263–1277

    Article  PubMed  CAS  Google Scholar 

  • Snipp RL, Miller WG, Nylund RE (1965) The charge-induced helix-random coil transition in aqueous solution. J Am Chem Soc 87:3547–3553

    Article  CAS  Google Scholar 

  • Takano K, Saito M, Morikawa M, Kanaya S (2004) Mutational and structural-based analyses of the osmolyte effect on protein stability. J Biochem 135:701–708

    Article  PubMed  CAS  Google Scholar 

  • Tsuji Y, Yasunaga T, Sano T, Ushio H (1976) Kinetic studies of the helix–coil transition in aqueous solutions of poly(α-l-glutamic acid) using the electric field pulse method. J Am Chem Soc 98:813–818

    Article  PubMed  CAS  Google Scholar 

  • van Stokkum IHM, Linsdell H, Hadden JM, Haris PI, Chapman D, Bloemendal M (1995) Temperature-induced changes in protein structures studied by Fourier transform infrared spectroscopy and global analysis. Biochemistry 34:10508–10518

    Article  PubMed  Google Scholar 

  • Venyaminov SY, Kalnin NN (1990) Quantitative IR spectrophotometry of peptide compounds in water (H2o) solutions II. Amide absorption bands of polypeptides in fibrous proteins in α-, β-, and random coil conformations. Biopolymers 30:1259–1271

    Article  PubMed  CAS  Google Scholar 

  • Venyaminov S Yu, Prendergast FG (1997) Water (H2O and D2O) molar absorptivity in the 1000–4000 cm−1 range and quantitative infrared spectroscopy of aqueous solution. Anal Biochem 248:234–245

    Article  PubMed  CAS  Google Scholar 

  • Walsh STR, Walsh R, Cheng P, Wright WW, Daggett V, Vanderkooi JM, Degrado WF (2003) The hydration of amides in helices: a comprehensive picture from molecular dynamics, IR and NMR. Protein Sci 12:520–531

    Article  PubMed  CAS  Google Scholar 

  • Williams S, Causgrove TP, Gilmanshin R, Fang KS, Callender RH, Woodruff WH, Dyer RB (1996) Fast events in protein folding: helix melting and formation in a small peptide. Biochemistry 35:691–697

    Article  PubMed  CAS  Google Scholar 

  • Wray WO, Aida T, Dyer RB (2002) Photoacoustic cavitation and heat transfer effects in the laser-induced temperature jump in water. Appl Phys B 74:57–66

    Article  CAS  Google Scholar 

  • Xu Y, Oyola R, Gai F (2003) Infrared study of the stability and folding kinetics of a 15-residue β-hairpin. J Am Chem Soc 125:15388–15394

    Article  PubMed  CAS  Google Scholar 

  • Yadav S, Ahmad F (2000) A new method for the determination of stability parameters of proteins from their heat-induced denaturation curves. Anal Biochem 283:207–213

    Article  PubMed  CAS  Google Scholar 

  • Yasunaga T, Sano T, Takahashi K, Takenaka H, Ito S (1973) Helix-coil transition of poly-α, l-glutamic acid in aqueous solution studied by the dissociation field effect relaxation method. Chem Lett 4:405–408

    Article  Google Scholar 

  • Yoder G, Pancoska P, Keiderling TA (1997) Characterization of alanine-rich peptides, Ac-(AAKAA)n-GY-NH2 (n = 1–4), using vibrational circular dichroism and Fourier transform infrared. Conformational determination and thermal unfolding. Biochemistry 36:15123–15133

    Article  PubMed  CAS  Google Scholar 

  • Zscherp C, Aygün H, Engels JW, Mäntele W (2003) Effect of proline to alanine mutation on the thermal stability of the all-β-sheet protein tendamistat. Biochim Biophys Acta 1651:139–145

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science and Culture of Hesse (HMWK) and by the University of Frankfurt (Förderfond koordinierter Programme).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Hauser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krejtschi, C., Hauser, K. Stability and folding dynamics of polyglutamic acid. Eur Biophys J 40, 673–685 (2011). https://doi.org/10.1007/s00249-011-0673-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-011-0673-8

Keywords

Navigation