Skip to main content
Log in

Protein dynamics of a β-sheet protein

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Rhodnius prolixus Nitrophorin 4 (abbreviated NP4) is an almost pure β-sheet heme protein. Its dynamics is investigated by X-ray structure determination at eight different temperatures from 122 to 304 K and by means of Mössbauer spectroscopy. A comparison of this β-sheet protein with the pure α-helical protein myoglobin (abbreviated Mbmet) is performed. The mean square displacement derived from the Mössbauer spectra increases linearly with temperature below a characteristic temperature T c. It is about 10 K larger than that of myoglobin. Above T c the mean square displacements increase dramatically. The Mössbauer spectra are analyzed by a two state model. The increased mean square displacements are caused by very slow motions occurring on a time scale faster than 140 ns. With respect to these motions NP4 shows the same protein specific modes as Mbmet. There is, however, a difference in the fast vibration regime. The B values found in the X-ray structures vary linearly over the entire temperature range. The mean square displacements in NP4 increase with slopes which are 60% larger than those observed for Mbmet. This indicates that nitrophorin has a larger structural distribution which makes it more flexible than myoglobin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Achterhold K, Keppler C, Ostermann A, van Bürck U, Sturhahn W, Alp EE, Parak FG (2002) Vibrational dynamics of myoglobin determined by phonon assisted Mössbauer effect. Phys Rev E 65:051916-1–051916-13

    Article  Google Scholar 

  • Andersen JF, Montfort WR (2000) Crystal structures of nitrophorin 2: a trifunctional antihemostatic protein from the saliva of Rhodnius prolixus. J Biol Chem 275:30496–30503. doi:10.1074/jbc.M002857200

    Article  PubMed  CAS  Google Scholar 

  • Andersen JF, Champagne DE, Weichsel A, Ribeiro JMC, Balfour CA, Dress V, Montfort WR (1997) Nitric oxide binding and crystallization of recombinant nitrophorin I, a nitric oxide transport protein from the bloodsucking bug Rhodnius prolixus. Biochemistry 36:4423–4428. doi:10.1021/bi9628883

    Article  PubMed  CAS  Google Scholar 

  • Andersen JF, Weichsel A, Balfour CA, Champagne DE, Montfort WR (1998) The crystal structure of nitrophorin 4 at 1.5 Å resolution: transport of nitric oxide by a lipocalin-based heme protein. Structure 6:1315–1327. doi:10.1016/S0969-2126(98)00131-2

    Article  PubMed  CAS  Google Scholar 

  • Andersen JF, Ding XD, Balfour C, Shokhireva TK, Champagne DE, Walker FA, Montfort WR (2000) Kinetics and equilibria in ligand binding by nitrophorins 1–4: evidence for stabilization of a nitric oxide–ferriheme complex through a ligand-induced conformational trap. Biochemistry 39:10118–10131. doi:10.1021/bi000766b

    Article  PubMed  CAS  Google Scholar 

  • Andersen JF, Gudderra NP, Francischetti IMB, Valenzuela JG, Ribeiro JMC (2004) Recognition of anionic phospholipid membranes by an antihemostatic protein from a blood-feeding insect. Biochemistry 43:6987–6994. doi:10.1021/bi049655t

    Article  PubMed  CAS  Google Scholar 

  • Ansari A, Berendzen J, Braunstein D, Cowen BR, Frauenfelder H, Hong MK, Iben IET, Johnson JB, Ormos P, Sauke TB, Scholl R, Schulte A, Steinbach PJ, Wittitow J, Young RD (1987) Rebinding and relaxation in the myoglobin pocket. Biophys Chem 26:337–355. doi:10.1016/0301-4622(87)80034-0

    Article  PubMed  CAS  Google Scholar 

  • Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2006) GenBank. Nucleic acids Research 34 Database issue: D16–D20

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242. doi:10.1093/nar/28.1.235

    Article  PubMed  CAS  Google Scholar 

  • Brünger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang J-s, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54:905–921. doi:10.1107/S0907444998003254

    Article  PubMed  Google Scholar 

  • Carson M (1997) Ribbons. In: Sweet RM, Carter CW (eds) Methods in enzymology, vol 277. Academic Press, New York, pp 493–505

    Google Scholar 

  • CCP4 (1994) The collaborative computational project 4 (CCP4) suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50:760–763. doi:10.1107/S0907444994003112

    Article  Google Scholar 

  • Champagne DE, Nussenzweig RH, Ribeiro JMC (1995) Purification, partial characterization, and cloning of nitric oxide-carrying heme proteins (nitrophorins) from salivary glands of the blood-sucking insect Rhodnius prolixus. J Biol Chem 15:8691–8695

    Google Scholar 

  • Chong S-H, Joti Y, Kidera A, Go N, Ostermann A, Gassmann A, Parak FG (2001) Dynamical transition of myoglobin in a crystal: comparative studies of X-ray crystallography and Mössbauer spectroscopy. Eur Biophys J 30:319–329. doi:10.1007/s002490100152

    Article  PubMed  CAS  Google Scholar 

  • Cooke R, Debrunner P (1968) Mössbauer studies of the iron atom in cytochrome C. J Chem Phys 48:4532–4537. doi:10.1063/1.1668022

    Article  PubMed  CAS  Google Scholar 

  • Debrunner PG (1989) Mössbauer spectroscopy of iron porphyrins. In: Lever ABP, Gray HB (eds) Iron porphyrins part III, pp 137–234

  • Ding XD, Weichsel A, Andersen JF, Shokhireva TK, Balfour C, Pierik AJ, Averill BA, Montfort WR, Walker FA (1999) Nitric oxide binding to the ferri- and ferroheme states of nitrophorin 1, a reversible NO-binding heme protein from the saliva of the blood-sucking insect, Rhodnius prolixus. J Am Chem Soc 121:128–138. doi:10.1021/ja982979i

    Article  CAS  Google Scholar 

  • Doster W, Settles M (1998) The dynamical transition in proteins: the role of hydrogen bonds. In: Bellissent-Funel M-C (ed) Hydratation processes in biology: theoretical and experimental approaches. IOS Press, Les Houches, pp 177–191

    Google Scholar 

  • Doster W, Cusack S, Petry W (1989) Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature 337:754–756. doi:10.1038/337754a0

    Article  PubMed  CAS  Google Scholar 

  • Drenth J (1998) Principles of protein X-ray crystallography. Springer, Berlin

    Google Scholar 

  • Engler N, Ostermann A, Gassmann A, Lamb DC, Prusakov VE, Schott J, Schweitzer-Stenner R, Parak FG (2000) Protein dynamics in an intermediate state of myoglobin: optical absorption, resonance Raman spectroscopy, and X-ray structure analysis. Biophys J 78:2081–2092. doi:10.1016/S0006-3495(00)76755-5

    Article  PubMed  CAS  Google Scholar 

  • Engler N, Ostermann A, Niimura N, Parak FG (2003) Hydrogen atoms in proteins––positions and dynamics. Proc Natl Acad Sci USA 100:10243–10248. doi:10.1073/pnas.1834279100

    Article  PubMed  CAS  Google Scholar 

  • Fenimore PW, Frauenfelder H, McMahon BH, Parak FG (2002) Slaving: solvent fluctuations dominate protein dynamics and functions. Proc Natl Acad Sci USA 99:16047–16051. doi:10.1073/pnas.212637899

    Article  PubMed  CAS  Google Scholar 

  • Fenimore PW, Frauenfelder H, McMahon BH, Young RD (2004) Bulk-solvent and hydration-shell fluctuations, similar to α- and β-fluctuations in glasses, control protein motions and functions. Proc Natl Acad Sci USA 101:14408–14413. doi:10.1073/pnas.0405573101

    Article  PubMed  CAS  Google Scholar 

  • Frauenfelder H, Parak F, Young RD (1988) Conformational substates in proteins. Annu Rev Biophys Biophys Chem 17:451–479. doi:10.1146/annurev.bb.17.060188.002315

    Article  PubMed  CAS  Google Scholar 

  • Frauenfelder H, Fenimore PW, Chen G, McMahon BH (2006) Protein folding is slaved to solvent motions. Proc Natl Acad Sci USA 103:15469–15472. doi:10.1073/pnas.0607168103

    Article  PubMed  CAS  Google Scholar 

  • Garbers A, Reifarth F, Kurrek J, Renger G, Parak F (1998) Correlation between protein flexibility and electron transfer from Qa to QB in PSII membrane fragments from spinach. Biochemistry 37:11399–11404. doi:10.1021/bi980296+

    Article  PubMed  CAS  Google Scholar 

  • Gol’danskii VI, Makarov EF (1968) Fundamentals of gamma-resonance spectroscopy. In: Goldanskii VI, Herber RH (eds) Chemical application of Mössbauer spectroscopy. Academic Press, New York

    Google Scholar 

  • Hartmann H, Zinser S, Komninos P, Schneider RT, Nienhaus GU, Parak F (1996) X-ray structure determination of a metastable state of carbonmonoxy myoglobin after photodissociation. Proc Natl Acad Sci USA 93:7013–7016. doi:10.1073/pnas.93.14.7013

    Article  PubMed  CAS  Google Scholar 

  • Hedvig P (1977) Dielectric spectroscopy of polymers. Adam Hilger, Bristol

    Google Scholar 

  • Huenges A, Achterhold K, Parak FG (2002) Mössbauer spectroscopy in the energy and in the time domain, a crucial tool for the investigation of protein dynamics. Hyperfine Interact 144/145:209–222. doi:10.1023/A:1025405805908

    Article  CAS  Google Scholar 

  • Jones A, Zou JY, Couran SW, Kjeldgaard M (1991) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A 47:110–119. doi:10.1107/S0108767390010224

    Article  PubMed  Google Scholar 

  • Knapp EW, Fischer SF, Parak F (1982) Protein dynamics from Moessbauer spectra. The temperature dependence. J Phys Chem 86:5042–5047. doi:10.1021/j100223a002

    Article  CAS  Google Scholar 

  • Kondrashov DA, Montfort WR (2007) Nonequilibrium dynamics simulations of nitric oxide release: comparative study of nitrophorin and myoglobin. J Phys Chem B 111:9244–9252. doi:10.1021/jp071136n

    Article  PubMed  CAS  Google Scholar 

  • Kondrashov DA, Roberts SA, Weichsel A, Montfort WR (2004) Protein functional cycle viewed at atomic resolution: conformational change and mobility in nitrophorin 4 as a function of pH and NO binding. Biochemistry 43:13637–13647. doi:10.1021/bi0483155

    Article  PubMed  CAS  Google Scholar 

  • Lamb DC, Ostermann A, Prusakov VE, Parak FG (1998) From metmyoglobin to deoxy myoglobin: relaxations of an intermediate state. Eur Biophys J 27:113–125. doi:10.1007/s002490050117

    Article  PubMed  CAS  Google Scholar 

  • Lang G, Herbert D, Yonetani T (1968) Mössbauer spectroscopy of cytochrome C. J Chem Phys 49:944–950. doi:10.1063/1.1670164

    Article  PubMed  CAS  Google Scholar 

  • Maes EM, Weichsel A, Andersen JF, Shepley D, Montfort WR (2004) Role of binding site loops in controlling nitric oxide release: structure and kinetics of mutant forms of nitrophorin 4. Biochemistry 43:6679–6690. doi:10.1021/bi049748a

    Article  PubMed  CAS  Google Scholar 

  • Maes EM, Roberts SA, Weichsel A, Montfort WR (2005) Ultrahigh resolution structures of nitrophorin 4: heme distortion in ferrous CO and No complexes. Biochemistry 44:12690–12699. doi:10.1021/bi0506573

    Article  PubMed  CAS  Google Scholar 

  • Nienhaus K, Maes EM, Weichsel A, Montfort WR (2004) Structural dynamics controls nitric oxide affinity in nitrophorin 4. J Biol Chem 279:39401–39407. doi:10.1074/jbc.M406178200

    Article  PubMed  CAS  Google Scholar 

  • Ostermann A, Waschipky R, Parak FG, Nienhaus GU (2000) Ligand binding and conformational motions in myoglobin. Nature 404:205–208. doi:10.1038/35004622

    Article  PubMed  CAS  Google Scholar 

  • Parak FG (2003) Proteins in action: the physics of structural fluctuations and conformational changes. Curr Opin Struct Biol 13:552–557. doi:10.1016/j.sbi.2003.09.004

    Article  PubMed  CAS  Google Scholar 

  • Parak F, Formanek H (1971) Untersuchung des Schwingungsanteils und des Kristallgitterfehleranteils des Temperaturfaktors in myoglobin durch Vergleich von Mössbauerabsorptionsmessungen mit Röntgenstrukturdaten. Acta Crystallogr A 27:573–578. doi:10.1107/S0567739471001281

    Article  CAS  Google Scholar 

  • Parak F, Frolov EN, Kononenko AA, Mössbauer RL, Goldanskii VI, Rubin AB (1980) Evidence for a correlation between the photoinduced electron transfer and dynamic properties of the chromatophore membranes from Rhodospirillum rubrum. FEBS Lett 117:368–372. doi:10.1016/0014-5793(80)80982-3

    Article  PubMed  CAS  Google Scholar 

  • Parak F, Knapp EW, Kucheida D (1982) Protein dynamics: Mössbauer spectroscopy on deoxymyoglobin crystals. J Mol Biol 161:177–194. doi:10.1016/0022-2836(82)90285-6

    Article  PubMed  CAS  Google Scholar 

  • Parak F, Fischer M, Graffweg E, Formanek H (1987a) Distributions and fluctuations of protein structures investigated by X-ray analysis and Mössbauer spectroscopy. In: Clementi E, Chin S (eds) Structure and dynamics of nucleic acids, proteins and membranes. pp 139–148

  • Parak F, Hartmann H, Aumann KD, Reuscher H, Rennekamp G, Bartunik H, Steigemann W (1987b) Low temperatures X-ray investigation of structural distributions in myoglobin. Eur Biophys J 15:237–249. doi:10.1007/BF00577072

    Article  PubMed  CAS  Google Scholar 

  • Petrova T, Ginell S, Mitschler A, Hazemann I, Schneider T, Cousido A, Lunin VY, Joachimiak A, Podjarny A (2006) Ultrahigh-resolution study of protein atomic displacement parameters at cryotemperatures obtained with a helium cryostat. Acta Crystallogr D Biol Crystallogr 62:1535–1544. doi:10.1107/S0907444906041035

    Article  PubMed  Google Scholar 

  • Prusakov VE, Steyer J, Parak FG (1995) Moessbauer spectroscopy on nonequilibrium states of myoglobin: a study of r–t relaxation. Biophys J 68:2524–2530. doi:10.1016/S0006-3495(95)80435-2

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen BF, Stock AM, Ringe D, Petsko GA (1992) Crystalline ribonuclease A loses function below the dynamical transition at 220 K. Nature 357:423–424. doi:10.1038/357423a0

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro JMC, Hazzard JMH, Nussenzweig RH, Champagne DE, Walker FA (1993) Reversible binding of nitric oxide by a salivary heme protein from a bloodsucking insect. Science 260:539–541. doi:10.1126/science.8386393

    Article  PubMed  CAS  Google Scholar 

  • Roberts SA, Weichsel A, Qiu Y, Shelnutt JA, Walker FA, Montfort WR (2001) Ligand-induced heme ruffling and bent NO geometry in ultra-high-resolution structures of nitrophorin 4. Biochemistry 40:11327–11337. doi:10.1021/bi0109257

    Article  PubMed  CAS  Google Scholar 

  • Schlichting I, Berendzen J, Phillips GN Jr, Sweet RM (1994) Crystal structure of photolysed carbonmonoxy-myoglobin. Nature 371:808–812. doi:10.1038/371808a0

    Article  PubMed  CAS  Google Scholar 

  • Sharrock M, Münck E, Debrunner PG, Marshall V, Lipscomb JD, Gunsalus IC (1973) Mössbauer studies of cytochrome P-450cam. Biochemistry 12:258–265. doi:10.1021/bi00726a013

    Article  PubMed  CAS  Google Scholar 

  • Shibata Y, Kurita A, Kushida T (1998) Real-time observation of conformational fluctuations in Zn-substituted myoglobin by time-resolved transient hole-burning spectroscopy. Biophys J 75:521–527. doi:10.1016/S0006-3495(98)77541-1

    Article  PubMed  CAS  Google Scholar 

  • Singh GP, Parak F, Hunklinger S, Dransfeld K (1981) Role of adsorbed water in the dynamics of metmyoglobin. Phys Rev Lett 47:685–688. doi:10.1103/PhysRevLett.47.685

    Article  CAS  Google Scholar 

  • Steinbach PJ, Ansari A, Berendzen J, Braunstein D, Chu K, Cowen BR, Ehrenstein D, Frauenfelder H, Johnson JB, Lamb DC, Mourant JR, GUl Nienhaus, Ormos P, Philipp R, Xie A, Young RD (1991) Ligand binding to heme proteins: connection between dynamics and function. Biochemistry 30:3988–4001. doi:10.1021/bi00230a026

    Article  PubMed  CAS  Google Scholar 

  • Teng T-Y, Šrajer V, Moffat K (1994) Photolysis-induced structural changes in single crystals of carbonmonoxy myoglobin at 40 K. Struct Biol 1:701–705. doi:10.1038/nsb1094-701

    Article  CAS  Google Scholar 

  • Teng T-Y, Šrajer V, Moffat K (1997) Initial trajectory of carbon monoxide after photodissociation from myoglobin at cryogenic temperatures. Biochemistry 36:12087–12100. doi:10.1021/bi971140x

    Article  PubMed  CAS  Google Scholar 

  • Walker FA (2005) Nitric oxide interaction with insect nitrophorins and thoughts on the electron configuration of the {FeNO}6 complex. J Inorg Biochem 99:216–236. doi:10.1016/j.jinorgbio.2004.10.009

    Article  PubMed  CAS  Google Scholar 

  • Walker FA, Montfort wR (2000) The nitric oxide-releasing heme proteins from the saliva of the blood-sucking insect Rhodnius prolixus. Adv Inorg Chem 51:295–358. doi:10.1016/S0898-8838(00)51006-X

    Article  Google Scholar 

  • Weichsel A, Andersen JF, Champagne DE, Walker FA, Montfort WR (1998) Crystal structures of a nitric oxide transport protein from a blood-sucking insect. Nat Struct Biol 5:304–309. doi:10.1038/nsb0498-304

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the German Research Foundation (DFG) under Grants No. PA 178/28-1 and PA 178/28-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz G. Parak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, M., Achterhold, K., Prusakov, V. et al. Protein dynamics of a β-sheet protein. Eur Biophys J 38, 687–700 (2009). https://doi.org/10.1007/s00249-009-0427-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-009-0427-z

Keywords

Navigation