Skip to main content

Advertisement

Log in

Enzyme solid-state support assays: a surface plasmon resonance and mass spectrometry coupled study of immobilized insulin degrading enzyme

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Solid-support based assays offer several advantages that are not normally available in solution. Enzymes that are anchored on gold surfaces can interact with several different molecules, opening the way to high throughput array format based assays. In this scenario, surface plasmon resonance (SPR) and mass spectrometry (MS) investigations have often been applied to analyze the interaction between immobilized enzyme and its substrate molecules in a tag-free environment. Here, we propose a SPR-MS combined experimental approach aimed at studying insulin degrading enzyme (IDE) immobilized onto gold surfaces and its ability to interact with insulin. The latter is delivered by a microfluidic system to the IDE functionalized surface and the activity of the immobilized enzyme is verified by atmospheric pressure/matrix assisted laser desorption ionization (AP/MALDI) MS analysis. The SPR experiments allow the calculation of the kinetic constants involved for the interaction between immobilized IDE and insulin molecules and evidence of IDE conformational change upon insulin binding is also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguilar M-I, Small DH (2005) Surface plasmon resonance for the analysis of β-amyloid interactions and fibril formation in Alzheimer’s disease research. Neurotox Res 7:17–27

    Article  PubMed  CAS  Google Scholar 

  • Andrade SM, Carvalho TI, Viseu MI, Costa SM (2004) Conformational changes of beta-lactoglobulin in sodium bis(2-ethylhexyl) sulfosuccinate reverse micelles. A fluorescence and CD study. Eur J Biochem 271:734–744. doi:10.1111/j.1432-1033.2004.03977.x

    Article  PubMed  CAS  Google Scholar 

  • Blomqvist ME-L, Silburn PA, Buchanan DD, Andreasen N, Blennow K, Pedersen NL, Brookes AJ, Mellick GD, Prince JA (2004) Sequence variation in the proximity of IDE may impact age at onset of both Parkinson disease and Alzheimer disease. Neurogenetics 5:115–119. doi:10.1007/s10048-004-0173-4

    Article  PubMed  CAS  Google Scholar 

  • D’Agata R, Grasso G, Spoto G (2008) Real-time binding kinetics monitored with surface plasmon resonance imaging in a diffusion-free environment. Open Spectrosc J 2:1–9. doi:10.2174/1874383800802010001

    Article  CAS  Google Scholar 

  • Darnell JE, Lodish H, Baltimore D (1990) Molecular cell biology. Scientific American Books, New York

    Google Scholar 

  • Di Venere A, Rossi A, De Matteis F, Rosato N, Finazzi Agrò A, Mei G (2000) Opposite effects of Ca2+ and GTP binding on tissue transglutaminase tertiary structure. J Biol Chem 275:3915–3921

    Article  PubMed  CAS  Google Scholar 

  • Drobny GP, Long JR, Karlsson T, Shaw W, Popham J, Oyler N, Bower P, Stringer JD, Mehta GM, Stayton PS (2003) Structural studies of biomaterials using double-quantum solid-state NMR spectroscopy. Annu Rev Phys Chem 54:531–571. doi:10.1146/annurev.physchem.54.011002.103903

    Article  PubMed  CAS  Google Scholar 

  • Farris W, Mansourian S, Chang Y, Lindsley L, Eckman EA, Frosch MP, Eckman CB, Tanzi RE, Selkoe DJ, Guénette S (2003) Insulin-degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci USA 100:4162–4167. doi:10.1073/pnas.0230450100

    Article  PubMed  CAS  Google Scholar 

  • Geitmann M, Danielson UH (2004) Studies of substrate-induced conformational changes in human cytomegalovirus protease using optical biosensor technology. Anal Biochem 332:203–214. doi:10.1016/j.ab.2004.06.008

    Article  PubMed  CAS  Google Scholar 

  • Grasso G, D’Agata R, Rizzarelli E, Spoto G, D’Andrea L, Pedone C, Picardi A, Romanelli A, Fragai M, Yeo KJ (2005) Activity of anchored human matrix metalloproteinase-1 catalytic domain on Au (111) surfaces monitored by ESI-MS. J Mass Spectrom 40:1565–1571. doi:10.1002/jms.929

    Article  PubMed  CAS  Google Scholar 

  • Grasso G, Fragai M, Rizzarelli E, Spoto G, Yeo KJ (2006) In situ AP-MALDI characterization of anchored MMPs. J Mass Spectrom 41:1561–1569. doi:10.1002/jms.1126

    Article  PubMed  CAS  Google Scholar 

  • Grasso G, Fragai M, Rizzarelli E, Spoto G, Yeo KJ (2007a) A new methodology for monitoring the activity of cdMMP-12 anchored and freeze-dried on Au (111). J Am Soc Mass Spectrom 18:961–969. doi:10.1016/j.jasms.2007.02.003

    Article  PubMed  CAS  Google Scholar 

  • Grasso G, Rizzarelli E, Spoto G (2007b) AP/MALDI-MS complete characterization of the proteolytic fragments produced by the interaction of insulin degrading enzyme with bovine insulin. J Mass Spectrom 42:1590–1598. doi:10.1002/jms.1348

    Article  PubMed  CAS  Google Scholar 

  • Grasso G, Rizzarelli E, Spoto G (2008) How the binding and degrading capabilities of insulin degrading enzyme are affected by ubiquitin. Biochim Biophys Acta 1784:1122–1126

    PubMed  CAS  Google Scholar 

  • Homola J (ed) (2006) Surface plasmon resonance based sensors. Springer, Berlin

    Google Scholar 

  • Honjo E, Watanabe K, Tsukamoto T (2002) Real-time kinetic analyses of the interaction of ricin toxin A-chain with ribosomes prove a conformational change involved in complex formation. J Biochem 131:267–275

    PubMed  CAS  Google Scholar 

  • Im H, Manolopoulou M, Malito E, Shen Y, Zhao J, Neant-Fery M, Sun C-Y, Meredith SC, Sisodia SS, Leissring M, Tang W-J (2007) Structure of substrate-free human insulin-degrading enzyme (IDE) and biophysical analysis of ATP-induced conformational switch of IDE. J Biol Chem 282:25453–25463. doi:10.1074/jbc.M701590200

    Article  PubMed  CAS  Google Scholar 

  • Ji ZL, Chen X, Zhen CJ, Yao LX, Han LY, Yeo WK, Chung PC, Puy HS, Tay YT, Muhammad A, Chen YZ (2003) KDBI: kinetic data of bio-molecular interactions database. Nucleic Acids Res 31:255–257. doi:10.1093/nar/gkg067

    Article  PubMed  CAS  Google Scholar 

  • Jung LS, Campbell CT, Chinowsky TM, Mar MN, Yee SS (1998) Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir 14:5636–5648. doi:10.1021/la971228b

    Article  CAS  Google Scholar 

  • Kang T, Hong S, Choi I, Sung JJ, Kim Y, Hahn J-S, Yi J (2006) Reversible pH-driven conformational switching of tethered superoxide dismutase with gold nanoparticle enhanced surface plasmon resonance spectroscopy. J Am Chem Soc 128:12870–12878. doi:10.1021/ja0632198

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Jung SO, Park K, Jeong E-J, Joung H-A, Kim T-H, Seol D-W, Chung BH (2005) Detection of bax protein conformational change using a surface plasmon resonance imaging-based antibody chip. Biochem Biophys Res Commun 338:1834–1838. doi:10.1016/j.bbrc.2005.10.155

    Article  PubMed  CAS  Google Scholar 

  • Kurochkin IV, Goto S (1994) Alzheimer’s β-amyloid peptide specifically interacts with and is degraded by insulin degrading enzyme. FEBS Lett 345:33–37. doi:10.1016/0014-5793(94)00387-4

    Article  PubMed  CAS  Google Scholar 

  • Lahiri J, Isaacs L, Tien J, Whitesides GM (1999) A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: a surface plasmon resonance study. Anal Chem 71:777–790. doi:10.1021/ac980959t

    Article  PubMed  CAS  Google Scholar 

  • Leissring MA, Selkoe DJ (2006) Structural biology: enzyme target to latch on to. Nature 443:761–762. doi:10.1038/nature05210

    Article  PubMed  CAS  Google Scholar 

  • Leslie TE, Lilley TH (1985) Aqueous solutions containing amino acids and peptides. Part 20. Volumetric behavior of some terminally substituted amino acids and peptides at 298.15 K. Biopolymers 24:695–710. doi:10.1002/bip.360240409

    Article  CAS  Google Scholar 

  • Manno M, Craparo EF, Podesta A, Bulone D, Carrotta R, Martorana V, Tiana G, San Biagio PL (2007) Kinetics of different processes in human insulin amyloid formation. J Mol Biol 366:258–274. doi:10.1016/j.jmb.2006.11.008

    Article  CAS  Google Scholar 

  • Miners JS, Kehoe PG, Love S (2008) Immunocapture-based fluorometric assay for the measurement of insulin-degrading enzyme activity in brain tissue homogenates. J Neurosci Methods 169:177–181. doi:10.1016/j.jneumeth.2007.12.003

    Article  PubMed  CAS  Google Scholar 

  • Myszka DG, Morton TA (1998) CLAMP: a biosensor kinetic data analysis program. Trends Biochem Sci 23:149–150. doi:10.1016/S0968-0004(98)01183-9

    Article  PubMed  CAS  Google Scholar 

  • Myszka DG, Wood SJ, Biere AL (1999) Analysis of fibril elongation using surface plasmon resonance biosensors. Methods Enzymol 309:386–402. doi:10.1016/S0076-6879(99)09027-8

    Article  PubMed  CAS  Google Scholar 

  • Sharff AJ, Rodseth LE, Spurlino JC, Quiocho FA (1992) Crystallographic evidence of a large ligand-induced hinge-twist motion between the two domains of the maltodextrin binding protein involved in active transport and chemotaxis. Biochemistry 31:10657–10663. doi:10.1021/bi00159a003

    Article  PubMed  CAS  Google Scholar 

  • Shen Y, Joachimiak A, Rosner MR, Tang W-J (2006) Structures of human insulin-degrading enzyme reveal a new substrate recognition mechanism. Nature 443:870–874. doi:10.1038/nature05143

    Article  PubMed  CAS  Google Scholar 

  • Song ES, Juliano MA, Juliano L, Hersh LB (2003) Substrate activation of insulin degrading enzyme (insulysin), a potential target for drug development. J Biol Chem 278:49789–49794. doi:10.1074/jbc.M308983200

    Article  PubMed  CAS  Google Scholar 

  • Sota H, Hasegawa Y, Iwakura M (1998) Detection of conformational changes in an immobilized protein using surface plasmon resonance. Anal Chem 70:2019–2024. doi:10.1021/ac9713666

    Article  PubMed  CAS  Google Scholar 

  • Vepsäläinen S, Parkinson M, Helisalmi S, Mannermaa A, Soininen H, Tanzi RE, Bertram L, Hiltunen M (2007) Insulin-degrading enzyme is genetically associated with Alzheimer’s disease in the Finnish population. J Med Genet 44:606–608. doi:10.1136/jmg.2006.048470

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi S, Mannen T, Zako T, Kamiya N, Nagamune T (2003) Measuring adsorption of a hydrophobic probe with a surface plasmon resonance sensor to monitor conformational changes in immobilized proteins. Biotechnol Prog 19:1348–1354. doi:10.1021/bp034015n

    Article  PubMed  CAS  Google Scholar 

  • Yowler BC, Schengrund C-L (2004) Botulinum neurotoxin A changes conformation upon binding to ganglioside GT1b. Biochemistry 43:9725–9731. doi:10.1021/bi0494673

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank MIUR (FIRB RBNE03PX83, RBIN04L28Y) and “EURAMY: Systemic Amyloidoses in Europe”, 037525 (LSHM-CT-2006-037525) for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Grasso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grasso, G., Bush, A.I., D’Agata, R. et al. Enzyme solid-state support assays: a surface plasmon resonance and mass spectrometry coupled study of immobilized insulin degrading enzyme. Eur Biophys J 38, 407–414 (2009). https://doi.org/10.1007/s00249-008-0384-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-008-0384-y

Keywords

Navigation