Skip to main content
Log in

Effects of oxidation, pH and lipids on amyloidogenic peptide structure: implications for fibril formation?

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

We have performed experimental and computational studies to investigate the influences of phospholipids, methionine oxidation and acidic pH on amyloid fibril formation by a peptide derived from human apolipoprotein C-II (apoC-II), a known component of proteinaceous atherosclerotic plaques. Fibril growth monitored by thioflavin T fluorescence revealed inhibition under lipid-rich and oxidising conditions. We subsequently performed fully-solvated atomistic molecular dynamics (MD) simulations of the peptide monomer to study its conformations under both fibril favouring (neutral and low pH) and inhibiting (lipid-rich and oxidising) conditions. Examination of the chain topology, backbone hydrogen-bonding patterns and aromatic sidechain orientations of the peptide under different conditions reveals that, while the peptide adopts similar structures under the fibril-favouring conditions, significantly different structures are obtained under fibril-disruptive conditions. Based on our results, we advance hypotheses for the roles of peptide conformation on aggregation and fibrillisation propensities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baumketner A, Bernstein SL, Wyttenbach T, Lazo ND, Teplow DB, Bowers MT et al (2006) Structure of the 21–30 fragment of amyloid beta-protein. Protein Sci 15:1239–1247. doi:10.1110/ps.062076806

    Article  PubMed  CAS  Google Scholar 

  • Baumketner A, Shea J-E (2007) The structure of the Alzheimer amyloid beta 10–35 peptide probed through replica-exchange molecular dynamics simulations in explicit solvent. J Mol Biol 366:275–285. doi:10.1016/j.jmb.2006.11.015

    Article  PubMed  CAS  Google Scholar 

  • Baumketner A, Shea JE (2006) Folding landscapes of the Alzheimer amyloid-beta(12–28) peptide. J Mol Biol 362:567–579. doi:10.1016/j.jmb.2006.07.032

    Article  PubMed  CAS  Google Scholar 

  • Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR (1984) Molecular-dynamics with coupling to an external bath. J Chem Phys 81:3684–3690. doi:10.1063/1.448118

    Article  CAS  Google Scholar 

  • Berger O, Edholm O, Jahnig F (1997) Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J 72:2002–2013

    Article  PubMed  CAS  Google Scholar 

  • Bergstrom AL, Chabry J, Bastholm L, Heegaard PMH (2007) Oxidation reduces the fibrillation but not the neurotoxicity of the prion peptide PrP106–126. Biochim Biophys Acta Prot Proteomics 1774:1118–1127. doi:10.1016/j.bbapap.2007.06.016

    Article  CAS  Google Scholar 

  • Binger KJ, Griffin MD, Howlett GJ (2008) Breaking up amyloid fibrils: methionine oxidation dissociates preformed amyloid fibrils. FEBS J 275:442

    Google Scholar 

  • Colombo G, Daidone I, Gazit E, Amadei A, Di Nola A (2005) Molecular dynamics simulation of the aggregation of the core-recognition motif of the islet amylolid polypeptide in explicit water. Proteins 59:519–527. doi:10.1002/prot.20426

    Article  PubMed  CAS  Google Scholar 

  • Daidone I, Amadei A, Di Nola A (2005) Thermodynamic and kinetic characterization of a beta-hairpin peptide in solution: an extended phase space sampling by molecular dynamics simulations in explicit water. Proteins 59:510–518. doi:10.1002/prot.20427

    Article  PubMed  CAS  Google Scholar 

  • Daidone I, Simona F, Roccatano D, Broglia RA, Tiana G, Colombo G et al (2004) beta-hairpin conformation of fibrillogenic peptides: structure and alpha-beta transition mechanism revealed by molecular dynamics simulations. Proteins 57:198–204. doi:10.1002/prot.20178

    Article  PubMed  CAS  Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particle Mesh Ewald—an N.Log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092. doi:10.1063/1.464397

    Article  CAS  Google Scholar 

  • Dobson CM (2002) Getting out of shape. Nature 418:729–730. doi:10.1038/418729a

    Article  PubMed  CAS  Google Scholar 

  • Fink AL (2006) The aggregation and fibrillation of alpha-synuclein. Acc Chem Res 39:628–634. doi:10.1021/ar050073t

    Article  PubMed  CAS  Google Scholar 

  • Flock D, Colacino S, Colombo G, Di Nola A (2006a) Misfolding of the amyloid beta-protein: a molecular dynamics study. Proteins 62:183–192. doi:10.1002/prot.20683

    Article  PubMed  CAS  Google Scholar 

  • Flock D, Rossetti G, Daidone I, Amadei A, Di Nola A (2006b) Aggregation of small peptides studied by molecular dynamics simulations. Proteins 65:914–921. doi:10.1002/prot.21168

    Article  PubMed  CAS  Google Scholar 

  • Gazit E (2007) Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem Soc Rev 36:1263–1269. doi:10.1039/b605536m

    Article  PubMed  CAS  Google Scholar 

  • Gordon LM, Mobley PW, Lee W, Eskandari S, Kaznessis YN, Sherman MA et al (2004) Conformational mapping of the N-terminal peptide of HIV-1 gp41 in lipid detergent and aqueous environments using C-13-enhanced Fourier transform infrared spectroscopy. Protein Sci 13:1012–1030. doi:10.1110/ps.03407704

    Article  PubMed  CAS  Google Scholar 

  • Griffin MDW, Mok MLY, Wilson LM, Pham CLL, Waddington LJ, Perugini MA et al (2008) Phospholipid interaction induces molecular-level polymorphism in apolipoprotein C-II amyloid fibrils via alternative assembly pathways. J Mol Biol 375:240–256

    PubMed  CAS  Google Scholar 

  • Gunsteren WFv, Kruger P, Billeter SR, Mark AE, Eising AA, Scott WRP, Huneberger PH, Tironi IG (1996) Biomolecular simulation: the GROMOS96 manual and user guide. Biomos & Hochschulverlag AG an der ETH Zurich, Groningen/Zurich

  • Han W, Wu YD (2007) Molecular dynamics studies of hexamers of amyloid-beta peptide (16–35) and its mutants: influence of charge states on amyloid formation. Proteins 66:575–587. doi:10.1002/prot.21232

    Article  PubMed  CAS  Google Scholar 

  • Hatters DM, Howlett GJ (2002) The structural basis for amyloid formation by plasma apolipoproteins: a review. Eur Biophys J Biophys Lett 31:2–8

    CAS  Google Scholar 

  • Hatters DM, Lawrence LJ, Howlett GJ (2001) Sub-micellar phospholipid accelerates amyloid formation by apolipoprotein C-II. FEBS Lett 494:220–224. doi:10.1016/S0014-5793(01)02355-9

    Article  PubMed  CAS  Google Scholar 

  • Hatters DM, MacPhee CE, Lawrence LJ, Sawyer WH, Howlett GJ (2000) Human apolipoprotein C-II forms twisted amyloid ribbons and closed loops. Biochemistry 39:8276–8283. doi:10.1021/bi000002w

    Article  PubMed  CAS  Google Scholar 

  • Hatters DM, Minton AP, Howlett GJ (2002) Macromolecular crowding accelerates amyloid formation by human apolipoprotein C-II. J Biol Chem 277:7824–7830. doi:10.1074/jbc.M110429200

    Article  PubMed  CAS  Google Scholar 

  • Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472. doi :10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H

    Article  CAS  Google Scholar 

  • Hou LM, Kang I, Marchant RE, Zagorski MG (2002) Methionine 35 oxidation reduces fibril assembly of the amyloid A beta-(1–42) peptide of Alzheimer’s disease. J Biol Chem 277:40173–40176. doi:10.1074/jbc.C200338200

    Article  PubMed  CAS  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33

    Article  PubMed  CAS  Google Scholar 

  • Inouye H, Sharma D, Goux WJ, Kirschner DA (2006) Structure of core domain of fibril-forming PHF/Tau fragments. Biophys J 90:1774–1789

    Article  PubMed  CAS  Google Scholar 

  • Kabsch W, Sander C (1983) Dictionary of protein secondary structure—pattern-recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637. doi:10.1002/bip.360221211

    Article  PubMed  CAS  Google Scholar 

  • Kamiya N, Mitomo D, Shea JE, Higo J (2007) Folding of the 25 residue A beta(12–36) peptide in TFE/water: temperature-dependent transition from a funneled free-energy landscape to a rugged one. J Phys Chem B 111:5351–5356. doi:10.1021/jp067075v

    Article  PubMed  CAS  Google Scholar 

  • Khandogin J, Chen JH, Brooks CL (2006) Exploring atomistic details of pH-dependent peptide folding. PNAS USA 103:18546–18550. doi:10.1073/pnas.0605216103

    Article  PubMed  CAS  Google Scholar 

  • Knecht V, Mohwald H, Lipowsky R (2007) Conformational diversity of the fibrillogenic fusion peptide B18 in different environments from molecular dynamics simulations. J Phys Chem B 111:4161–4170. doi:10.1021/jp0659204

    Article  PubMed  CAS  Google Scholar 

  • Legge ES, Treutlein H, Howlett GJ, Yarovsky I (2007) Molecular dynamics simulations of a fibrillogenic peptide derived from apolipoprotein C-II. Biophys Chem 130:102–113. doi:10.1016/j.bpc.2007.08.002

    Article  PubMed  CAS  Google Scholar 

  • Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317

    CAS  Google Scholar 

  • Luttmann E, Fels G (2006) All-atom molecular dynamics studies of the full-length beta-amyloid peptides. Chem Phys 323:138–147. doi:10.1016/j.chemphys.2005.08.071

    Article  CAS  Google Scholar 

  • Ma BY, Nussinov R (2002) Stabilities and conformations of Alzheimer’s β-amyloid peptide oligomers (Aβ 16–22, Aβ 16–35, and Aβ 10–35): sequence effects. PNAS USA 99:14126–14131. doi:10.1073/pnas.212206899

    Article  PubMed  CAS  Google Scholar 

  • MacRaild CA, Hatters DM, Howlett GJ, Gooley PR (2001) NMR structure of human apolipoprotein C-II in the presence of sodium dodecyl sulfate. Biochemistry 40:5414–5421. doi:10.1021/bi002821m

    Article  PubMed  CAS  Google Scholar 

  • MacRaild CA, Howlett GJ, Gooley PR (2004) The structure and interactions of human apolipoprotein C-II in dodecyl phosphocholine. Biochemistry 43:8084–8093. doi:10.1021/bi049817l

    Article  PubMed  CAS  Google Scholar 

  • Mak PA, Laffitte BA, Desrumaux C, Joseph SB, Curtiss LK, Mangelsdorf DJ et al (2002) Regulated expression of the apolipoprotein E/C–I/C-IV/C-II gene cluster in murine and human macrophages—a critical role for nuclear liver X receptors alpha and beta. J Biol Chem 277:31900–31908. doi:10.1074/jbc.M202993200

    Article  PubMed  CAS  Google Scholar 

  • Makin OS, Atkins E, Sikorski P, Johansson J, Serpell LC (2005) Molecular basis for amyloid fibril formation and stability. PNAS USA 102:315–320. doi:10.1073/pnas.0406847102

    Article  PubMed  CAS  Google Scholar 

  • Maleknia SD, Reixach N, Buxbaum JN (2006) Oxidation inhibits amyloid fibril formation of transthyretin. FEBS J 273:5400–5406. doi:10.1111/j.1742-4658.2006.05532.x

    Article  PubMed  CAS  Google Scholar 

  • Milner-White EJ, Watson JD, Qi GY, Hayward S (2006) Amyloid formation may involve alpha- to beta sheet interconversion via peptide plane flipping. Structure 14:1369–1376. doi:10.1016/j.str.2006.06.016

    Article  PubMed  CAS  Google Scholar 

  • Naito A, Kamihira M, Inoue R, Saito H (2004) Structural diversity of amyloid fibril formed in human calcitonin as revealed by site-directed C-13 solid-state NMR spectroscopy. Magn Reson Chem 42:247–257. doi:10.1002/mrc.1323

    Article  PubMed  CAS  Google Scholar 

  • Nelson R, Eisenberg D (2006) Recent atomic models of amyloid fibril structure. Curr Opin Struct Biol 16:260–265. doi:10.1016/j.sbi.2006.03.007

    Article  PubMed  CAS  Google Scholar 

  • Nishino M, Sugita Y, Yoda T, Okamoto Y (2005) Structures of a peptide fragment of beta(2)-microglobulin studied by replica-exchange molecular dynamics simulations—towards the understanding of the mechanism of amyloid formation. FEBS Lett 579:5425–5429. doi:10.1016/j.febslet.2005.08.068

    Article  PubMed  CAS  Google Scholar 

  • Palmblad M, Westlind-Danielsson A, Bergquist J (2002) Oxidation of methionine 35 attenuates formation of amyloid beta-peptide 1–40 oligomers. J Biol Chem 277:19506–19510. doi:10.1074/jbc.M112218200

    Article  PubMed  CAS  Google Scholar 

  • Powers GA, Pham CLL, Pearce MC, Howlett GJ, Bottomley SP (2007) Serpin acceleration of amyloid fibril formation: a role for accessory proteins. J Mol Biol 366:666–676. doi:10.1016/j.jmb.2006.11.062

    Article  PubMed  CAS  Google Scholar 

  • Reches M, Gazit E (2005) Self-assembly of peptide nanotubes and amyloid-like structures by charged-termini-capped diphenylalanine peptide analogues. Isr J Chem 45:363–371. doi:10.1560/5MC0-V3DX-KE0B-YF3J

    Article  CAS  Google Scholar 

  • Santini S, Derreumaux P (2004) Helix H1 of the prion protein is rather stable against environmental perturbations: molecular dynamics of mutation and deletion variants of PrP(90–231). Cell Mol Life Sci 61:951–960. doi:10.1007/s00018-003-3455-3

    Article  PubMed  CAS  Google Scholar 

  • Sinha N, Tsai CJ, Nussinov R (2001) A proposed structural model for amyloid fibril elongation: domain swapping forms an interdigitating beta-structure polymer. Protein Eng 14:93–103. doi:10.1093/protein/14.2.93

    Article  PubMed  CAS  Google Scholar 

  • Stewart CR, Haw A, Lopez R, McDonald TO, Callaghan JM, McConville MJ et al (2007) Serum amyloid P colocalizes with apolipoproteins in human atheroma: functional implications. J Lipid Res 48:2162–2171. doi:10.1194/jlr.M700098-JLR200

    Article  PubMed  CAS  Google Scholar 

  • Tarus B, Straub JE, Thirumalai D (2006) Dynamics of Asp23-Lys28 salt-bridge formation in A beta(10–35) monomers. J Am Chem Soc 128:16159–16168. doi:10.1021/ja064872y

    Article  PubMed  CAS  Google Scholar 

  • Thurlkill RL, Grimsley GR, Scholtz JM, Pace CN (2006) pK values of the ionizable groups of proteins. Protein Sci 15:1214–1218. doi:10.1110/ps.051840806

    Article  PubMed  CAS  Google Scholar 

  • Tomaselli S, Esposito V, Vangone P, van Nuland NAJ, Bonvin AMJJ, Guerrini R et al (2006) The alpha-to-beta conformational transition of Alzheimer’s A beta-(1–42) peptide in aqueous media is reversible: a step by step conformational analysis suggests the location of beta conformation seeding. ChemBioChem 7:257–267. doi:10.1002/cbic.200500223

    Article  PubMed  CAS  Google Scholar 

  • Triguero L, Singh R, Prabhakar R (2008) Molecular dynamics study to investigate the effect of chemical substitutions of methionine 35 on the secondary structure of the amyloid beta (A beta(1–42)) monomer in aqueous solution. J Phys Chem B 112:2159–2167. doi:10.1021/jp0771872

    Article  PubMed  CAS  Google Scholar 

  • Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718. doi:10.1002/jcc.20291

    Article  CAS  Google Scholar 

  • Wei GH, Shea JE (2006) Effects of solvent on the structure of the Alzheimer amyloid-beta(25–35) peptide. Biophys J 91:1638–1647. doi:10.1529/biophysj.105.079186

    Article  PubMed  CAS  Google Scholar 

  • Wilson LM, Mok YF, Binger KJ, Griffin MDW, Mertens HDT, Lin F et al (2007) A structural core within apolipoprotein C-II amyloid fibrils identified using hydrogen exchange and proteolysis. J Mol Biol 366:1639–1651. doi:10.1016/j.jmb.2006.12.040

    Article  PubMed  CAS  Google Scholar 

  • Wu C, Lei HX, Duan Y (2005) The role of Phe in the formation of well-ordered oligomers of amyloidogenic hexapeptide (NFGAIL) observed in molecular dynamics simulations with explicit solvent. Biophys J 88:2897–2906. doi:10.1529/biophysj.104.055574

    Article  PubMed  CAS  Google Scholar 

  • Zdunek J, Martinez GV, Schleucher J, Lycksell PO, Yin Y, Nilsson S et al (2003) Global structure and dynamics of human apolipoprotein CII in complex with micelles: evidence for increased mobility of the helix involved in the activation of lipoprotein lipase. Biochemistry 42:1872–1889. doi:10.1021/bi0267184

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the Australian Partnership for Advanced Computing (APAC) and Victorian Partnership for Advanced Computing (VPAC) for provision of computational resources, and the latter for provision of funds under the eResearch grants scheme. We also thank our colleagues at RMIT University (Sue Legge, Nevena Todorova and Akin Budi) for many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Yarovsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hung, A., Griffin, M.D.W., Howlett, G.J. et al. Effects of oxidation, pH and lipids on amyloidogenic peptide structure: implications for fibril formation?. Eur Biophys J 38, 99–110 (2008). https://doi.org/10.1007/s00249-008-0363-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-008-0363-3

Keywords

Navigation