Skip to main content
Log in

Conformational change of influenza virus hemagglutinin is sensitive to ionic concentration

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The homotrimeric spike glycoprotein hemagglutinin (HA) of influenza virus undergoes a low pH-mediated conformational change which mediates the fusion of the viral envelope with the target membrane. Previous approaches predict that the interplay of electrostatic interactions between and within HA subunits, HA 1 and HA2, are essential for the metastability of the HA ectodomain. Here, we show that suspension media of low ionic concentration promote fusion of fluorescent labelled influenza virus X31 with erythrocyte ghosts and with ganglioside containing liposomes. By measuring the low pH mediated inactivation of the fusion competence of HA and the Proteinase K sensitivity of low pH incubated HA we show that the conformational change is promoted by low ionic concentration. We surmise that electrostatic attraction within the HA ectodomain is weakened by lowering the ionic concentration facilitating the conformational change at low pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

HA:

Hemagglutinin

PBS:

Phosphate buffered saline

R18:

Octadecylrhodamine B chloride

FDQ:

Fluorescence dequenching

References

  • Arbuzova A, Korte T, Müller P, Herrmann A (1994) On the validity of lipid dequenching assays for estimating virus fusion kinetics. Biochim Biophys Acta 1190:360–366

    Article  Google Scholar 

  • Blumenthal R, Bali-Puri A, Walter A, Covell D, Eidelman O (1987) pH-dependent fusion of vesicular stomatitis virus with Vero cells: measurement by dequenching of octadecyl-rhodamine fluorescence. J Biol Chem 262:13614–13619

    Google Scholar 

  • Bluementhal R, Sarkar DP, Durell S, Howard DE, Morris SJ (1996) Dilation of the influenza hemagglutinin fusion pore revealed by the kinetics of individual cell-cell fusion events. J Cell Biol 135:63–71

    Article  Google Scholar 

  • Bullough PA, Hughson FM, Skehel JJ, Wiley DC (1994) Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371:37–43

    Article  ADS  Google Scholar 

  • Carr CM, Kim PS (1993) A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell 73:823–832

    Article  Google Scholar 

  • Carr CM, Chaudhry C, Kim PS (1997) Influenza hemagglutinin is spring-loaded by a metastable native conformation. Proc Natl Acad Sci USA 94:14306–14313

    Article  ADS  Google Scholar 

  • Chen J, Lee KH, Steinhauer DA, Stevens DJ, Skehel JJ, Wiley DC (1998) Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation. Cell 95:409–417

    Article  Google Scholar 

  • Clague MJ, Schoch C, Blumenthal R (1991) Delay time for influenza virus hemagglutinin-induced membrane fusion depends on hemagglutinin surface density. J Virol 65:2402–2407

    Google Scholar 

  • Danieli T, Pelletier SL, Henis YL, White JM (1996) Membrane fusion mediated by the influenza virus hemagglutinin requires the concerted action of at least three hemagglutinin trimers. J Cell Biol 133:559–569

    Article  Google Scholar 

  • Dodge JT, Mitchell C, Hanahan DJ (1963) The preparation and chemical characteristics of hemoglobin free ghosts of human erythrocytes. Arch Biochem Biophys 100:119–130

    Article  Google Scholar 

  • Doms RW, Helenius A, White J (1985) Membrane fusion activity of the influenza virus hemagglutinin. The low pH-induced conformational change. J Biol Chem 260:2973–2981

    Google Scholar 

  • Durrer P, Galli C, Hoenke S, Corti C, Gluck R, Vorherr T, Brunner J (1996) H+-induced membrane insertion of influenza virus hemagglutinin involves the HA2 amino-terminal fusion peptide but not the coiled coil region. J Biol Chem 271:13417–13421

    Article  Google Scholar 

  • Eisenberg M, Gresalfi T, Riccio T, McLaughlin S (1979) Adsorption of monovalent cations to bilayer membranes containing negative phospholipids. Biochemistry 18:5213–5223

    Article  Google Scholar 

  • Gamblin SJ, Haire LF, Russell RJ, Stevens DJ, Xiao B, Ha Y, Vasisht N, Steinhauer DA, Daniels RS, Elliot A, Wiley DC, Skehel JJ (2004) The structure and receptor binding properties of the 1918 influenza hemagglutinin. Science 303:1838–1842

    Article  ADS  Google Scholar 

  • Godley L, Pfeifer J, Steinhauer D, Ely B, Shaw G, Kaufmann R, Suchanek E, Pabo C, Skehel JJ, Wiley DC, Wharton S (1992) Introduction of intersubunit disulfide bonds in the membrane-distal region of the influenza hemagglutinin abolishes membrane fusion activity. Cell 68:635–645

    Article  Google Scholar 

  • Ha Y, Stevens DJ, Skehel JJ, Wiley DC (2002) H5 avian and H9 swine influenza virus haemagglutinin structures, possible origin of influenza subtypes. EMBO J 21:865–875

    Article  Google Scholar 

  • Herrmann A, Laßmann G, Groth Th, Donath E, Hillebrecht B (1986) Structural alterations within the glycocalyx of erythrocyte membranes studied by spin labeling. Biochim Biophys Acta 861:111-118

    Google Scholar 

  • Herrmann A, Clague MJ, Blumenthal R (1993a) Enhancement of viral fusion by non-adsorbing polymers. Biophys J 65:528–534

    Google Scholar 

  • Herrmann A, Clague MJ, Blumenthal R (1993b) Role of target membrane structure in fusion with influenza virus—effect of modulating erythrocyte transbilayer phospholipid distribution. Membr Biochem 10:3–15

    Google Scholar 

  • Hoekstra D, de Boer T, Klappe K, Wilschut J (1984) Fluorescence method for measuring the kinetics of fusion between biological membranes. Biochemistry 23:5675–5681

    Article  Google Scholar 

  • Huang Q, Opitz R, Knapp EW, Herrmann A (2002) Protonation and stability of the globular domain of influenza virus hemagglutinin. Biophys J 82:1050–1058

    Google Scholar 

  • Huang Q, Sivaramakrishna RP, Ludwig K, Korte T, Böttcher C, Herrmann A (2003) Early steps of the conformational change of influenza virus hemagglutinin to a fusion active state. Stability and energetics of the hemagglutinin. Biochim Biophys Acta 1614:3–13

    Article  Google Scholar 

  • Kemble GW, Bodian DL, Rose J, Wilson IA, White JM (1992) Intermonomer disulfide bonds impair the fusion activity of influenza virus hemagglutinin. J Virol 66:4940–4950

    Google Scholar 

  • Korte T, Ludwig K, Krumbiegel M, Zirwer D, Damaschun G, Herrmann A (1997) Transient changes of the conformation of hemagglutinin of influenza virus at low pH detected by time-resolved CD-spectroscopy. J Biol Chem 272:9764–9770

    Article  Google Scholar 

  • Leikina E, Ramos C, Markovic I, Zimmerberg J, Chernomordik LV (2002) Reversible stages of the low-pH-triggered conformational change in influenza virus hemagglutinin. EMBO J 21:5701–5710

    Article  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  • Lüneberg J, Martin I, Nüssler F, Ruysschaert JM, Herrmann A (1995) Structure and topology of the influenza virus fusion peptide in lipid bilayers. J Biol Chem 270:27606–27614

    Article  Google Scholar 

  • Markosyan RM, Melikyan GB, Cohen FS (2001) Evolution of intermediates of influenza virus hemagglutinin-mediated fusion revealed by kinetic measurements of pore formation. Biophys J 80:812–821

    Article  Google Scholar 

  • Markovic I, Leikina E, Zhukovsky M, Zimmerberg J, Chernomordik LV (2001) Synchronized activation and refolding of influenza hemagglutinin in multimeric fusion machines. J Cell Biol 155:833–843

    Article  Google Scholar 

  • Mittal A, Bentz J (2001) Comprehensive kinetic analysis of influenza hemagglutinin-mediated membrane fusion: role of sialate binding. Biophys J 81:1521–1535

    Google Scholar 

  • Nicholls A (1992) GRASP: graphical representation and analysis of surface properties. Columbia University Press, New York

  • Pak CC, Krumbiegel M, Blumenthal R (1994) Intermediates in influenza PR/8 hemagglutinin-induced membrane fusion. J Gen Virol 75:395–399

    Article  Google Scholar 

  • Papahadjopoulos D (1968) Surface properties of acidic phospholipids: interaction of monolayers and hydrated liquid crystals with uni- and bi-valent metal ions. Biochim Biophys Acta 163:240–254

    Article  Google Scholar 

  • Rodriguez PEA, Maggio B, Cumar FA (1996) Acid and enzymatic hydrolysis of the internal sialic acid residue in native and chemically modified ganglioside GM1. J Lipid Res 37:382–390

    Google Scholar 

  • Russell RJ, Gamblin SJ, Haire LF, Stevens DJ, Xia B, Ha Y, Skehel JJ (2004) H1 and H7 influenza haemagglutinin structures extend a structural classification of haemagglutinin subtypes. Virology 235:287–296

    Article  Google Scholar 

  • Sato SB, Kawasaki K, Ohnishi S (1983) Hemolytic activity of influenza virus hemagglutinin glycoproteins activated in mildly acidic environments. Proc Natl Acad Sci USA 80:153–3157

    Article  Google Scholar 

  • Schoch C, Blumenthal R, Clague MJ (1992) A long-lived state for influenza virus-erythrocyte complexes committed to fusion at neutral pH. FEBS Lett 311:221–225

    Article  Google Scholar 

  • Stevens J, Corper AL, Basler CF, Taubenberger JK, Palese P, Wilson IA (2004) Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus. Science 303:1866–1870

    Article  ADS  Google Scholar 

  • Stevens J, Blixt O, Tumpey TM, Taubenberger JK, Paulson JC, Wilson IA (2006) Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 321:404–410

    Article  ADS  Google Scholar 

  • White J, Kartenbeck J, Helenius A (1982) Membrane fusion activity of influenza virus. EMBO J 1:217–222

    Google Scholar 

  • Wilson IA, Skehel JJ, Wiley DC (1981) Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature 289:366–373

    Article  ADS  Google Scholar 

Download references

Acknowledgment

We are indebted to Bärbel Hillebrecht for technical assistance. This work was supported by a grant from the Deutsche Forschungsgemeinschaft to AH (HE 1928/4–4).

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. K. Arnold on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korte, T., Ludwig, K., Huang, Q. et al. Conformational change of influenza virus hemagglutinin is sensitive to ionic concentration. Eur Biophys J 36, 327–335 (2007). https://doi.org/10.1007/s00249-006-0116-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-006-0116-0

Keywords

Navigation