Skip to main content
Log in

Maximum-entropy decomposition of fluorescence correlation spectroscopy data: application to liposome–human serum albumin association

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Fluorescence correlation spectroscopy was used to measure the diffusion behavior of a mixture of DMPC or DMPC/DMPG liposomes with human serum albumin (HSA) and mesoporphyrin (MP), which was used as the fluorescent label for liposomes and HSA as well. For decomposing the fluorescence intensity autocorrelation function (ACF) into components corresponding to a liposome population, HSA and MP, we used a maximum entropy procedure that computes a distribution of diffusion times consistent with the ACF data. We found that a simple parametric non-linear fit with a discrete set of decay components did not converge to a stable parameter set. The distribution calculated with the maximum entropy method was stable and the average size of the particles calculated from the effective diffusion time was in good agreement with the data determined using the discrete-component fit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  • Bárdos-Nagy I, Galantai R, Kaposi A, Fidy J (1998) Difference in the transport of metal and free-base porphyrins. Steady-state and time-resolved fluorescence studies. Int J Pharm 175:255–267

    Article  Google Scholar 

  • Bardos-Nagy I, Galantai R, Laberge M, Fidy J (2003) The effect of trehalose on the nonbond associative interactions between small unilamellar vesicles and human serum albumin and on the aging process. Langmuir 19:146–153

    Article  CAS  Google Scholar 

  • Bryan R (1990) Maximum entropy analysis of oversampled data problems. Eur Biophys J 18:165

    CAS  Google Scholar 

  • Chen Y, Müller JD, Tetin SY, Tyner JD, Gratton E (2000) Probing ligand protein binding equilibria with fluorescence fluctuation spectroscopy. Biophys J 79:1074–1084

    CAS  PubMed  Google Scholar 

  • Elson EL, Magde D (1974) Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers 13:1–27

    CAS  Google Scholar 

  • Ferrer ML, Duchowicz R, Carrasco B, de la Torre, JG, Acuna AU (2001) The conformation of serum albumin in solution: a combined phosphorescence depolarization-hydrodynamic modeling study. Biophys J 80:2422–2430

    CAS  PubMed  Google Scholar 

  • Galantai R, Bardos-Nagy I (2000) The interaction of human serum albumin and model membranes. Int J Pharm 195:207–18

    Article  CAS  PubMed  Google Scholar 

  • Galantai R, Bardos-Nagy I, Modos K, Kardos J, Zavodszky P, Fidy J (2000) Serum albumin-lipid membrane interaction influencing the uptake of porphyrins. Arch Biochem Biophys 373:261–270

    Article  CAS  PubMed  Google Scholar 

  • Gull SF, Daniell GJ (1978) Image reconstruction from incomplete and noisy data. Nature 272:686–690

    Google Scholar 

  • Langowski J, Bryan R (1991) Maximum entropy analysis of photon correlation spectroscopy data using a Bayesian estimate for the regularization parameter. Macromolecules 24:6346–6348

    CAS  Google Scholar 

  • Langowski J, Tewes M (2000) Determination of DNA-ligand interactions by fluorescence correlation spectroscopy. In: Travers A, Buckle M (eds) Protein-DNA interactions: a practical approach. Oxford University Press, Oxford, pp 95–111

  • Magde D, Elson EL, Webb WW (1972) Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlations spectroscopy. Phys Rev Lett 29:705–708

    Article  CAS  Google Scholar 

  • Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13:29–61

    PubMed  Google Scholar 

  • Oncley JL, Scatchard G, Brown A (1947) Physical-chemical characteristics of certain of the proteins of normal human plasma. J Phys Colloid Chem 51:184

    CAS  Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA, Vetterling VT (1986) Numerical recipes in C: the art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  • Qian H, Elson EL (1991) Analysis of confocal laser-microscope optics for 3-D fluorescence correlation spectroscopy. Appl Opt 30:1185–1195

    CAS  Google Scholar 

  • Reddi E, Ricchelli F, Jori G (1981) Interaction of human serum albumin with hematoporphyrin and its Zn(2)+- and Fe(3)+-derivatives. Int J Pept Protein Res 18:402–408

    CAS  PubMed  Google Scholar 

  • Rigler R, Mets Ü, Widengren J, Kask P (1993) Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion. Eur Biophys J 22:169–175

    CAS  Google Scholar 

  • Rouser G, Simon G, Kritchevsky G (1969) Species variations in phospholipid class distribution of organs. I. Kidney, liver and spleen. Lipids 4:599–606

    CAS  PubMed  Google Scholar 

  • Skilling J, Bryan RK (1984) Maximum entropy image reconstruction: general algorithm. Mon Not R Astron Soc 211:111–124

    Google Scholar 

  • Widengren J, Mets Ü, Rigler R (1995) Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study. J Phys Chem 99:13368–13379

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Langowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Módos, K., Galántai, R., Bárdos-Nagy, I. et al. Maximum-entropy decomposition of fluorescence correlation spectroscopy data: application to liposome–human serum albumin association. Eur Biophys J 33, 59–67 (2004). https://doi.org/10.1007/s00249-003-0343-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-003-0343-6

Keywords

Navigation