Skip to main content

Advertisement

Log in

Marine Heatwave Caused Differentiated Dysbiosis in Photosymbiont Assemblages of Corals and Hydrocorals During El Niño 2015/2016

  • Research
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Reef corals have been threatened by climate change, with more frequent and intense bleaching events leading to extensive coral mortality and loss of coral cover worldwide. In the face of this, the corals’ photosymbiont assemblages have received special attention as a key to better understand the bleaching process and its recovery. To assess the effects of thermal anomalies, the coral Mussismilia harttii and the hydrocoral Millepora alcicornis were monitored through the El Niño 2015/2016 at a Southwestern Atlantic (SWA) coral reef. A severe bleaching event (57% of colonies bleached) was documented, triggered by a < 3 °C-week heatwave, but no mortality was detected. The hydrocoral was more susceptible than the scleractinian, displaying bleaching symptoms earlier and experiencing a longer and more intense bleaching event. The composition of photosymbionts in the M. alcicornis population was affected only at the rare biosphere level (< 5% relative abundance), with the emergence of new symbionts after bleaching. Conversely, a temporary dysbiosis was observed in the M. harttii population, with one of the dominant symbiodiniaceans decreasing in relative abundance at the peak of the bleaching, which negatively affected the total β-diversity. After colonies’ complete recovery, symbiodiniaceans’ dominances returned to normal levels in both hosts. These results highlight critical differences in how the two coral species cope with bleaching and contribute to the understanding of the role of photosymbionts throughout the bleaching-recovery process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The molecular data generated and analyzed during the current study are available in the NCBI Sequence Read Archive database under the BioProject ID PRJNA943220.

References

  1. Hughes TP, Anderson KD, Connolly SR et al (2018) Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359:80–83. https://doi.org/10.1126/science.aan8048

    Article  CAS  PubMed  Google Scholar 

  2. Brown BE (1997) Coral bleaching: causes and consequences. Coral Reefs 16:S129–S138

    Article  Google Scholar 

  3. Glynn PW (1996) Coral reef bleaching: facts, hypotheses and implications. Glob Chang Biol 2:495–509. https://doi.org/10.1111/j.1365-2486.1996.tb00063.x

    Article  Google Scholar 

  4. Hoegh-Guldberg O, Mumby PJ, Hooten AJ et al (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  PubMed  Google Scholar 

  5. Claar DC, Szostek L, McDevitt-Irwin JM et al (2018) Global patterns and impacts of El Niño events on coral reefs: a meta-analysis. PLoS One 13:e0190957. https://doi.org/10.1371/journal.pone.0190957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Coffroth MA, Santos SR (2005) Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist 156:19–34. https://doi.org/10.1016/j.protis.2005.02.004

    Article  CAS  PubMed  Google Scholar 

  7. Oliver TA, Palumbi SR (2011) Many corals host thermally resistant symbionts in high-temperature habitat. Coral Reefs 30:241–250. https://doi.org/10.1007/s00338-010-0696-0

    Article  Google Scholar 

  8. LaJeunesse TC, Parkinson JE, Gabrielson PW et al (2018) Systematic revision of symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol 28:2570–2580.e6. https://doi.org/10.1016/j.cub.2018.07.008

    Article  CAS  PubMed  Google Scholar 

  9. Rowan R (2004) Thermal adaptation in reef coral symbionts. Nature 430:742

    Article  CAS  PubMed  Google Scholar 

  10. Swain TD, Chandler J, Backman V, Marcelino L (2017) Consensus thermotolerance ranking for 110 Symbiodinium phylotypes: an exemplar utilization of a novel iterative partial-rank aggregation tool with broad application potential. Funct Ecol 31:172–183. https://doi.org/10.1111/1365-2435.12694

    Article  Google Scholar 

  11. Rouzé H, Lecellier G, Pochon X et al (2019) Unique quantitative Symbiodiniaceae signature of coral colonies revealed through spatio-temporal survey in Moorea. Sci Rep 9:7921. https://doi.org/10.1038/s41598-019-44017-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. de Souza MR, Caruso C, Ruiz-Jones L et al (2022) Community composition of coral-associated Symbiodiniaceae differs across fine-scale environmental gradients in Kãne’ohe Bay. R Soc Open Sci 9:212042. https://doi.org/10.1098/rsos.212042

  13. Buddemeier RW, Fautin DG (1993) Bleaching as an adaptive mechanism. Bioscience 43:320–326

    Article  Google Scholar 

  14. Ware JR, Fautin DG, Buddemeier RW (1996) Patterns of coral bleaching: modeling the adaptive bleaching hypothesis. Ecol Model 84:199–214. https://doi.org/10.1016/0304-3800(94)00132-4

    Article  Google Scholar 

  15. Kinzie III RA, Takayama M, Santos SR, Coffroth MA (2001) The adaptive bleaching hypothesis: experimental tests of critical assumptions. Biol Bull 200:51–58

    Article  PubMed  Google Scholar 

  16. Castro CB, Pires DO (2001) Brazilian coral reefs: what we already know and what is still missing. Bull Mar Sci 69:357–371

    Google Scholar 

  17. de Oliveira SM, Teixeira CEP, Ferreira SMC et al (2019) Thermal stress and tropical reefs: mass coral bleaching in a stable temperature environment? Mar Biodivers. https://doi.org/10.1007/s12526-019-00994-4

  18. Ferreira LCL, Grillo AC, Filho FPMR et al (2021) Different responses of massive and branching corals to a major heatwave at the largest and richest reef complex in South Atlantic. Mar Biol 168:54. https://doi.org/10.1007/s00227-021-03863-6

    Article  CAS  Google Scholar 

  19. Lisboa DS, Kikuchi RKP, Leão ZMAN (2018) El Niño, sea surface temperature anomaly and coral bleaching in the South Atlantic: a chain of events modeled with a Bayesian approach. J Geophys Res Ocean 123:2554–2569. https://doi.org/10.1002/2017JC012824

    Article  Google Scholar 

  20. Banha TNS, Capel KCC, Kitahara MV et al (2020) Low coral mortality during the most intense bleaching event ever recorded in subtropical Southwestern Atlantic reefs. Coral Reefs 39:515–521. https://doi.org/10.1007/s00338-019-01856-y

    Article  Google Scholar 

  21. Mies M, Francini-Filho RB, Zilberberg C et al (2020) South Atlantic coral reefs are major global warming refugia and less susceptible to bleaching. Front Mar Sci 7:514. https://doi.org/10.3389/FMARS.2020.00514

    Article  Google Scholar 

  22. Silva-Lima AW, Walter JM, Garcia GD et al (2015) Multiple Symbiodinium strains are hosted by the brazilian endemic corals Mussismilia spp. Microb Ecol 70:301–310. https://doi.org/10.1007/s00248-015-0573-z

    Article  PubMed  Google Scholar 

  23. Picciani N, de Lossio e Seiblitz IG, de Paiva PC et al (2016) Geographic patterns of Symbiodinium diversity associated with the coral Mussismilia hispida (Cnidaria, Scleractinia) correlate with major reef regions in the Southwestern Atlantic Ocean. Mar Biol 163:236. https://doi.org/10.1007/s00227-016-3010-z

    Article  Google Scholar 

  24. Teschima MM, Garrido A, Paris A et al (2019) Biogeography of the endosymbiotic dinoflagellates (Symbiodiniaceae) community associated with the brooding coral Favia gravida in the Atlantic Ocean. PLoS One 14:1–18. https://doi.org/10.1371/journal.pone.0213519

    Article  CAS  Google Scholar 

  25. Garrido AG, de Assis Leite DC, Machado LF et al (2022) Highly diverse and geographically differentiated Symbiodiniaceae communities associated with the hydrocoral Millepora alcicornis in the Atlantic Ocean. Coral Reefs. https://doi.org/10.1007/s00338-022-02266-3

  26. Tedesco EC, Calderon EN, Seoane JCS et al (2018) Coral reef benthic assemblages of a Marine Protected Area in Eastern Brazil: effect of reef habitats on the spatial pattern of species. J Nat Hist 52:2723–2743. https://doi.org/10.1080/00222933.2018.1552332

    Article  Google Scholar 

  27. Santos HF, Carmo FL, Duarte G et al (2014) Climate change affects key nitrogen-fixing bacterial populations on coral reefs. ISME J 8:2272–2279. https://doi.org/10.1038/ismej.2014.70

    Article  PubMed  PubMed Central  Google Scholar 

  28. Leite DCA, Leão P, Garrido AG et al (2017) Broadcast spawning coral Mussismilia hispida can vertically transfer its associated bacterial core. Front Microbiol 8:176. https://doi.org/10.3389/fmicb.2017.00176

    Article  PubMed  PubMed Central  Google Scholar 

  29. de Barros MLF, Mies M, Güth AZ et al (2019) Peroxynitrite generation and increased heterotrophic capacity are linked to the disruption of the coral–dinoflagellate symbiosis in a Scleractinian and hydrocoral species. Microorganisms 7:426. https://doi.org/10.3390/microorganisms7100426

    Article  CAS  Google Scholar 

  30. de Barros MLF, Dalmolin C, Marques JA et al (2019) Oxidative stress biomarkers as potential tools in reef degradation monitoring: a study case in a South Atlantic reef under influence of the 2015–2016 El Niño/Southern Oscillation (ENSO). Ecol Indic 106:105533. https://doi.org/10.1016/j.ecolind.2019.105533

    Article  CAS  Google Scholar 

  31. Siebeck UE, Marshall NJ, Klüter A, Hoegh-Guldberg O (2006) Monitoring coral bleaching using a colour reference card. Coral Reefs 25:453–460. https://doi.org/10.1007/s00338-006-0123-8

    Article  Google Scholar 

  32. Liu G, Strong AE, Skirving W (2003) Remote sensing of sea surface temperatures during 2002 barrier reef coral bleaching. EOS Trans Am Geophys Union 84:137–141. https://doi.org/10.1029/2003EO150001

    Article  Google Scholar 

  33. Le Nohaïc M, Ross CL, Cornwall CE et al (2017) Marine heatwave causes unprecedented regional mass bleaching of thermally resistant corals in northwestern Australia. Sci Rep 7:14999. https://doi.org/10.1038/s41598-017-14794-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fukami H, Budd AF, Levitan DR et al (2004) Geographic differences in species boundaries among members of the Montastraea annularis complex based on molecular and morphological markers. Evolution (N Y) 58:324–337. https://doi.org/10.1111/j.0014-3820.2004.tb01648.x

    Article  CAS  Google Scholar 

  35. Hume BCC, Ziegler M, Poulain J et al (2018) An improved primer set and amplification protocol with increased specificity and sensitivity targeting the Symbiodinium ITS2 region. PeerJ 6:e4816. https://doi.org/10.7717/peerj.4816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Team RC (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online at https://www.R-project.org/

  37. Donner SD, Rickbeil GJM, Heron SF (2017) A new, high-resolution global mass coral bleaching database. PLoS One 12:e0175490. https://doi.org/10.1371/journal.pone.0175490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. de Oliveira Soares M (2018) Climate change and regional human pressures as challenges for management in oceanic islands, South Atlantic. Mar Pollut Bull 131:347–355. https://doi.org/10.1016/j.marpolbul.2018.04.008

    Article  CAS  Google Scholar 

  39. Liu B, Guan L, Chen H (2021) Detecting 2020 Coral Bleaching Event in the Northwest Hainan Island Using CoralTemp SST and Sentinel-2B MSI Imagery. Remote Sens 13:4948. https://doi.org/10.3390/rs13234948

    Article  Google Scholar 

  40. Brown B, Dunne R, Goodson M, Douglas A (2002) Experience shapes the susceptibility of a reef coral to bleaching. Coral Reefs 21:119–126. https://doi.org/10.1007/s00338-002-0215-z

    Article  Google Scholar 

  41. Abrego D, Ulstrup KE, Willis BL, Van Oppen MJH (2008) Species-specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress. Proc R Soc B Biol Sci 275:2273–2282. https://doi.org/10.1098/rspb.2008.0180

    Article  CAS  Google Scholar 

  42. Cook CB, Logan A, Ward J et al (1990) Elevated temperatures and bleaching on a high latitude coral reef: the 1988 Bermuda event. Coral Reefs 9:45–49. https://doi.org/10.1007/BF00686721

    Article  Google Scholar 

  43. Banaszak AT, Ayala-Schiaffino BN, Rodríguez-Román A et al (2003) Response of Millepora alcicornis (Milleporina: Milleporidae) to two bleaching events at Puerto Morelos reef, Mexican Caribbean. Rev Biol Trop 51:57–66. https://doi.org/10.15517/rbt.v51i4.26429

    Article  PubMed  Google Scholar 

  44. Lewis JB (1992) Heterotrophy in corals: zooplankton predation by the hydrocoral Millepora complanata. Mar Ecol Prog Ser 90:251–256. https://doi.org/10.3354/meps090251

    Article  Google Scholar 

  45. Olguín-López N, Hérnandez-Elizárraga VH, Hernández-Matehuala R et al (2019) Impact of El Niño-Southern Oscillation 2015-2016 on the soluble proteomic profile and cytolytic activity of Millepora alcicornis (“fire coral”) from the Mexican Caribbean. PeerJ 2019:1–26. https://doi.org/10.7717/peerj.6593

    Article  CAS  Google Scholar 

  46. Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst 34:661–689. https://doi.org/10.1146/annurev.ecolsys.34.011802.132417

    Article  Google Scholar 

  47. Bosch TCG, Miller DJ (2016) Bleaching as an obvious dysbiosis in corals. The Holobiont Imperative. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1896-2_9

    Chapter  Google Scholar 

  48. Boilard A, Dubé CE, Gruet C et al (2020) Defining coral bleaching as a microbial dysbiosis within the coral holobiont. Microorganisms 8:1682. https://doi.org/10.3390/microorganisms8111682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jones A, Berkelmans R, van Oppen M et al (2008) A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proc R Soc B Biol Sci 275:1359–1365. https://doi.org/10.1098/rspb.2008.0069

    Article  CAS  Google Scholar 

  50. Ziegler M, Eguíluz VM, Duarte CM, Voolstra CR (2018) Rare symbionts may contribute to the resilience of coral–algal assemblages. ISME J 12:161–172. https://doi.org/10.1038/ismej.2017.151

    Article  PubMed  Google Scholar 

  51. Boulotte NM, Dalton SJ, Carroll AG et al (2016) Exploring the Symbiodinium rare biosphere provides evidence for symbiont switching in reef-building corals. ISME J 10:2693–2701. https://doi.org/10.1038/ismej.2016.54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. LaJeunesse TC, Smith RT, Finney J, Oxenford H (2009) Outbreak and persistence of opportunistic symbiotic dinoflagellates during the 2005 Caribbean mass coral ‘bleaching’ event. Proc R Soc B 276:4139–4148. https://doi.org/10.1098/rspb.2009.1405

    Article  PubMed  PubMed Central  Google Scholar 

  53. Jones A, Berkelmans R (2010) Potential costs of acclimatization to a warmer climate: growth of a reef coral with heat tolerant vs. sensitive symbiont types. PLoS One 5:e10437. https://doi.org/10.1371/journal.pone.0010437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Toller WW, Rowan R, Knowlton N (2010) Repopulation of zooxanthellae in the Caribbean corals Montastraea annularis and M. faveolata following experimental and disease-associated bleaching. Biol Bull 201:360–373. https://doi.org/10.2307/1543614

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Rodrigo Nunes and MSc. Bruno Rodrigues for providing the technical support for sequencing and the infrastructure of the Integrated Functional Genomics Unit, and Dr. Raquel Peixoto for providing the storage of refrigerated samples. The Coral Vivo Project and its sponsors Petrobras, through the Petrobras Environmental Program, and Arraial d’Ajuda Eco Parque are acknowledged for supporting field research and logistics.

Funding

This work was supported by the Coral Vivo Project and its sponsors Petrobras through the Petrobras Environmental Program and Arraial d’Ajuda Eco Parque. A G Garrido was a Ph.D. fellow from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ - Programa Bolsa Nota 10 # 2/2021).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Amana G. Garrido, Laís F. Machado, Cristiano M. Pereira, and Douglas P. Abrantes performed material preparation, data collection, and analysis. Carla Zilberberg and Emiliano N. Calderon led the funding acquisition. Amana G Garrido wrote the manuscript’s first draft, and all authors commented on previous versions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Amana Guedes Garrido.

Ethics declarations

Ethics Approval

This study was performed under the sampling permission (# 47714-1) of the Brazilian Institute of Environment and Renewable Natural Resources (IBAMA) / Chico Mendes Institute for Biodiversity Conservation (ICMBio), under the Instruction Normative n° 03/2014 of System Authorization and Information on Biodiversity (SISBIO).

Competing Interests

The authors declare no competing interests.

Supplementary Information

ESM 1

(DOCX 6296 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garrido, A.G., Machado, L.F., Pereira, C.M. et al. Marine Heatwave Caused Differentiated Dysbiosis in Photosymbiont Assemblages of Corals and Hydrocorals During El Niño 2015/2016. Microb Ecol 86, 2959–2969 (2023). https://doi.org/10.1007/s00248-023-02299-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-023-02299-3

Keywords

Navigation