Skip to main content

Advertisement

Log in

Origin, Selection, and Succession of Coastal Intertidal Zone-Derived Bacterial Communities Associated with the Degradation of Various Lignocellulose Substrates

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Terrestrial microbial consortia were reported to play fundamental roles in the global carbon cycle and renewable energy production through the breakdown of complex organic carbon. However, we have a poor understanding of how biotic/abiotic factors combine to influence consortia assembly and lignocellulose degradation in aquatic ecosystems. In this study, we used 96 in situ lignocellulose enriched, coastal intertidal zone-derived bacterial consortia as the initial inoculating consortia and developed 384 cultured consortia under different lignocellulose substrates (aspen, pine, rice straw, and purified Norway spruce lignin) with gradients of salinity and temperature. As coastal consortia, salinity was the strongest driver for assembly, followed by Norway spruce lignin, temperature, and aspen. Moreover, a conceptual model was proposed to demonstrate different succession dynamics between consortia under herbaceous and woody lignocelluloses. The succession of consortium under Norway spruce lignin is greatly related with abiotic factors, while its substrate degradation is mostly correlated with biotic factors. A discrepant pattern was observed in the consortium under rice straw. Finally, we developed four groups of versatile, yet specific consortia. Our study not only reveals that coastal intertidal wetlands are important natural resources to enrich lignocellulolytic degrading consortia but also provides insights into the succession and ecological function of coastal consortium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All sequencing data have been deposited in the NCBI SRA database under the accession number PRJNA865006.

References

  1. Becker J, Wittmann C (2019) A field of dreams: lignin valorization into chemicals, materials, fuels, and health-care products. Biotechnol Adv 37:107360. https://doi.org/10.1016/j.biotechadv.2019.02.016

    Article  CAS  PubMed  Google Scholar 

  2. Lin L, Wang X, Cao L, Xu M (2019) Lignin catabolic pathways reveal unique characteristics of dye-decolorizing peroxidases in Pseudomonas putida. Environ Microbiol 21:1847–1863. https://doi.org/10.1111/1462-2920.14593

    Article  CAS  PubMed  Google Scholar 

  3. Lin L (2022) Bottom-up synthetic ecology study of microbial consortia to enhance lignocellulose bioconversion. Biotechnol Biofuels Bioprod 15:14. https://doi.org/10.1186/s13068-022-02113-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Peng X, Wilken SE, Lankiewicz TS, Gilmore SP, Brown JL, Henske JK, Swift CL, Salamov A, Barry K, Grigoriev IV, Theodorou MK, Valentine DL, O’Malley MA (2021) Genomic and functional analyses of fungal and bacterial consortia that enable lignocellulose breakdown in goat gut microbiomes. Nat Microbiol 6:499–511. https://doi.org/10.1038/s41564-020-00861-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Díaz-García L, Huang S, Spröer C, Sierra-Ramírez R, Bunk B, Overmann J, Jiménez DJ (2021) Dilution-to-stimulation/extinction method: a combination enrichment strategy to develop a minimal and versatile lignocellulolytic bacterial consortium. Appl Environ Microbiol 87:e02427-e2420. https://doi.org/10.1128/aem.02427-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cortes-Tolalpa L, Jiménez DJ, de Lima Brossi MJ, Salles JF, van Elsas JD (2016) Different inocula produce distinctive microbial consortia with similar lignocellulose degradation capacity. Appl Microbiol Biotechnol 100:7713–7725. https://doi.org/10.1007/s00253-016-7516-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zegeye EK, Brislawn CJ, Farris Y, Fansler SJ, Hofmockel KS, Jansson JK, Wright AT, Graham EB, Naylor D, McClure RS, Bernstein HC (2019) Selection, succession, and stabilization of soil microbial consortia. mSystems 4. https://doi.org/10.1128/mSystems.00055-19

  8. Kolinko S, Wu YW, Tachea F, Denzel E, Hiras J, Gabriel R, Bäcker N, Chan LJG, Eichorst SA, Frey D, Chen Q, Azadi P, Adams PD, Pray TR, Tanjore D, Petzold CJ, Gladden JM, Simmons BA, Singer SW (2018) A bacterial pioneer produces cellulase complexes that persist through community succession. Nat Microbiol 3:99–107. https://doi.org/10.1038/s41564-017-0052-z

    Article  CAS  PubMed  Google Scholar 

  9. Wang W, Zhang Q, Sun X, Chen D, Insam H, Koide RT, Zhang S (2020) Effects of mixed-species litter on bacterial and fungal lignocellulose degradation functions during litter decomposition. Soil Biol Biochem 141:107690. https://doi.org/10.1016/j.soilbio.2019.107690

    Article  CAS  Google Scholar 

  10. Fang X, Li Q, Lin Y, Lin X, Dai Y, Guo Z, Pan D (2018) Screening of a microbial consortium for selective degradation of lignin from tree trimmings. Bioresour Technol 254:247–255. https://doi.org/10.1016/j.biortech.2018.01.058

    Article  CAS  PubMed  Google Scholar 

  11. Zhang G, Bai J, Tebbe CC, Zhao Q, Jia J, Wang W, Wang X, Yu L (2021) Salinity controls soil microbial community structure and function in coastal estuarine wetlands. Environ Microbiol 23:1020–1037. https://doi.org/10.1111/1462-2920.15281

    Article  CAS  PubMed  Google Scholar 

  12. Osland MJ, Enwright NM, Day RH, Gabler CA, Stagg CL, Grace JB (2016) Beyond just sea-level rise: considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change. Glob Chang Biol 22:1–11. https://doi.org/10.1111/gcb.13084

    Article  PubMed  Google Scholar 

  13. Zhang Z, Han P, Zheng Y, Jiao S, Dong H, Liang X, Gao D, Niu Y, Yin G, Liu M, Hou L (2022) Spatiotemporal dynamics of bacterial taxonomic and functional profiles in estuarine intertidal soils of China coastal zone. Microb Ecol. https://doi.org/10.1007/s00248-022-01996-9

    Article  PubMed  Google Scholar 

  14. Puentes-Téllez PE, Salles JF (2020) Dynamics of abundant and rare bacteria during degradation of lignocellulose from sugarcane biomass. Microb Ecol 79:312–325. https://doi.org/10.1007/s00248-019-01403-w

    Article  CAS  PubMed  Google Scholar 

  15. Pérez-Hernández V, Hernández-Guzmán M, Luna-Guido M, Navarro-Noya YE, Romero-Tepal EM, Dendooven L (2021) Bacterial communities in alkaline saline soils amended with young maize plants or its (hemi)cellulose fraction. Microorganisms 9:1297. https://doi.org/10.3390/microorganisms9061297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tláskal V, Brabcová V, Větrovský T, Jomura M, López-Mondéjar R, Oliveira Monteiro LM, Saraiva JP, Human ZR, Cajthaml T, Nunes da Rocha U, Baldrian P (2021) Complementary roles of wood-inhabiting fungi and bacteria facilitate deadwood decomposition.mSystems 6. https://doi.org/10.1128/mSystems.01078-20

  17. Haq IU, Hillmann BM, Moran MK, Willard S, Knights D, Fixen KR, Schilling JS (2022) Bacterial communities associated with wood rot fungi that use distinct decomposition mechanisms. ISME Commun. https://doi.org/10.1038/s43705-022-00108-5

    Article  PubMed Central  Google Scholar 

  18. Zhang J, Zhang W, Cai Z, Zhang J, Guan D, Ji D, Gao W (2022) Effect of ammonia fiber expansion combined with NaOH pretreatment on the resource efficiency of herbaceous and woody lignocellulosic biomass. ACS Omega 7:18761–18769. https://doi.org/10.1021/acsomega.2c01302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cortes-Tolalpa L, Norder J, van Elsas JD, Falcao Salles J (2018) Halotolerant microbial consortia able to degrade highly recalcitrant plant biomass substrate. Appl Microbiol Biotechnol 102:2913–2927. https://doi.org/10.1007/s00253-017-8714-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang Y, Elzenga T, van Elsas JD (2021) Effect of culture conditions on the performance of lignocellulose-degrading synthetic microbial consortia. Appl Microbiol Biotechnol 105:7981–7995. https://doi.org/10.1007/s00253-021-11591-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Leadbeater DR, Oates NC, Bennett JP, Li Y, Dowle AA, Taylor JD, Alponti JS, Setchfield AT, Alessi AM, Helgason T, McQueen-Mason SJ, Bruce NC (2021) Mechanistic strategies of microbial communities regulating lignocellulose deconstruction in a UK salt marsh. Microbiome 9:48. https://doi.org/10.1186/s40168-020-00964-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cragg SM, Beckham GT, Bruce NC, Bugg TD, Distel DL, Dupree P, Etxabe AG, Goodell BS, Jellison J, McGeehan JE, McQueen-Mason SJ, Schnorr K, Walton PH, Watts JE, Zimmer M (2015) Lignocellulose degradation mechanisms across the Tree of Life. Curr Opin Chem Biol 29:108–119. https://doi.org/10.1016/j.cbpa.2015.10.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Meslé MM, Mueller RC, Peach J, Eilers B, Tripet BP, Bothner B, Copié V, Peyton BM (2022) Isolation and characterization of lignocellulose-degrading Geobacillus thermoleovorans from Yellowstone National Park. Appl Environ Microbiol 88:e0095821. https://doi.org/10.1128/aem.00958-21

    Article  CAS  PubMed  Google Scholar 

  24. Tomazetto G, Pimentel AC, Wibberg D, Dixon N, Squina FM (2020) Multi-omic directed discovery of cellulosomes, polysaccharide utilization loci, and lignocellulases from an enriched rumen anaerobic consortium. Appl Environ Microbiol 86:e00199-e120. https://doi.org/10.1128/aem.00199-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang X, Lin L, Zhou J (2021) Links among extracellular enzymes, lignin degradation and cell growth establish the models to identify marine lignin-utilizing bacteria. Environ Microbiol 23:160–173. https://doi.org/10.1111/1462-2920.15289

    Article  CAS  PubMed  Google Scholar 

  26. Wang X, Lin L, Dong J, Ling J, Wang W, Wang H, Zhang Z, Yu X (2018) Simultaneous improvements of Pseudomonas cell growth and polyhydroxyalkanoate production from a lignin derivative for lignin-consolidated bioprocessing. Appl Environ Microbiol 84:e01469-e1418. https://doi.org/10.1128/aem.01469-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carroll J, Van Oostende N, Ward BB (2022) Evaluation of genomic sequence-based growth rate methods for Synchronized Synechococcus cultures. Appl Environ Microbiol 88:e0174321. https://doi.org/10.1128/aem.01743-21

    Article  CAS  PubMed  Google Scholar 

  28. Cao L, Lin L, Sui H, Wang H, Zhang Z, Jiao N, Zhou J (2021) Efficient extracellular laccase secretion via bio-designed secretory apparatuses to enhance bacterial utilization of recalcitrant lignin. Green Chem 23:2079–2094. https://doi.org/10.1039/D0GC04084C

    Article  CAS  Google Scholar 

  29. Singh A, Kumar R, Maurya A, Chowdhary P, Raj A (2022) Isolation of functional ligninolytic Bacillus aryabhattai from paper mill sludge and its lignin degradation potential. Biotechnol Rep (Amst) 35:e00755. https://doi.org/10.1016/j.btre.2022.e00755

    Article  CAS  PubMed  Google Scholar 

  30. Xu C, Su X, Wang J, Zhang F, Shen G, Yuan Y, Yan L, Tang H, Song F, Wang W (2021) Characteristics and functional bacteria in a microbial consortium for rice straw lignin-degrading. Bioresour Technol 331:125066. https://doi.org/10.1016/j.biortech.2021.125066

    Article  CAS  PubMed  Google Scholar 

  31. Brown ME, Walker MC, Nakashige TG, Iavarone AT, Chang MC (2011) Discovery and characterization of heme enzymes from unsequenced bacteria: application to microbial lignin degradation. J Am Chem Soc 133:18006–18009. https://doi.org/10.1021/ja203972q

    Article  CAS  PubMed  Google Scholar 

  32. Brossi MJdL, Jiménez DJ, Cortes-Tolalpa L, Elsas JD (2016) Soil-derived microbial consortia enriched with different plant biomass reveal distinct players acting in lignocellulose degradation. Microb Ecol 71:616–627. https://doi.org/10.1007/s00248-015-0683-7

    Article  CAS  Google Scholar 

  33. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2012) Determination of structural carbohydrates and lignin in biomass. NREL Lab Anal Proced (LAP)

  34. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. https://doi.org/10.1128/aem.00062-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Du S, Dini-Andreote F, Zhang N, Liang C, Yao Z, Zhang H, Zhang D (2020) Divergent co-occurrence patterns and assembly processes structure the abundant and rare bacterial communities in a salt marsh ecosystem. Appl Environ Microbiol 86:e00322-e320. https://doi.org/10.1128/aem.00322-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhou J, Liu W, Deng Y, Jiang YH, Xue K, He Z, Van Nostrand JD, Wu L, Yang Y, Wang A (2013) Stochastic assembly leads to alternative communities with distinct functions in a bioreactor microbial community. mBio 4:e00584-00512. https://doi.org/10.1128/mBio.00584-12

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang S, Xiong W, Wang Y, Nie Y, Wu Q, Xu Y, Geisen S (2020) Temperature-induced annual variation in microbial community changes and resulting metabolome shifts in a controlled fermentation system. mSystems 5:e00555-00520. https://doi.org/10.1128/mSystems.00555-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Oksanen J, Simpson G, Blanchet FG, Kindt R, Legendre P, Minchin P, hara R, Solymos P, Stevens H, Szöcs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D, Carvalho G, Chirico M, De Cáceres M, Durand S, Weedon J (2022) Vegan community ecology package version 2.6–2 April 2022

  40. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60. https://doi.org/10.1186/gb-2011-12-6-r60

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kendall MG (1945) The treatment of ties in ranking problems. Biometrika 33:239–251. https://doi.org/10.1093/biomet/33.3.239

    Article  CAS  PubMed  Google Scholar 

  42. Song W, Liu J, Qin W, Huang J, Yu X, Xu M, Stahl D, Jiao N, Zhou J, Tu Q (2022) Functional traits resolve mechanisms governing the assembly and distribution of nitrogen-cycling microbial communities in the global ocean. mBio 13:e0383221. https://doi.org/10.1128/mbio.03832-21

    Article  CAS  PubMed  Google Scholar 

  43. Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2:18–22

    Google Scholar 

  44. Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, Huttenhower C, Langille MGI (2020) PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 38:685–688. https://doi.org/10.1038/s41587-020-0548-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Farda B, Vaccarelli I, Ercole C, Djebaili R, Del Gallo M, Pellegrini M (2022) Exploring structure, microbiota, and metagenome functions of epigean and hypogean black deposits by microscopic, molecular and bioinformatics approaches. Sci Rep 12:19405. https://doi.org/10.1038/s41598-022-24159-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jiménez DJ, de Lima Brossi MJ, Schückel J, Kračun SK, Willats WG, van Elsas JD (2016) Characterization of three plant biomass-degrading microbial consortia by metagenomics- and metasecretomics-based approaches. Appl Microbiol Biotechnol 100:10463–10477. https://doi.org/10.1007/s00253-016-7713-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ning D, Deng Y, Tiedje JM, Zhou J (2019) A general framework for quantitatively assessing ecological stochasticity. Proc Natl Acad Sci U S A 116:16892–16898. https://doi.org/10.1073/pnas.1904623116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mathé C, Fawal N, Roux C, Dunand C (2019) In silico definition of new ligninolytic peroxidase sub-classes in fungi and putative relation to fungal life style. Sci Rep 9:20373. https://doi.org/10.1038/s41598-019-56774-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ruiz-Dueñas FJ, Martínez AT (2009) Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microb Biotechnol 2:164–177. https://doi.org/10.1111/j.1751-7915.2008.00078.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lewin GR, Davis NM, McDonald BR, Book AJ, Chevrette MG, Suh S, Boll A, Currie CR (2022) Long-term cellulose enrichment selects for highly cellulolytic consortia and competition for public goods. mSystems 7: e0151921. https://doi.org/10.1128/msystems.01519-21

  51. Hui W, Jiajia L, Yucai L, Peng G, Xiaofen W, Kazuhiro M, Zongjun C (2013) Bioconversion of un-pretreated lignocellulosic materials by a microbial consortium XDC-2. Bioresour Technol 136:481–487. https://doi.org/10.1016/j.biortech.2013.03.015

    Article  CAS  PubMed  Google Scholar 

  52. Cheng Y, Huang M, Shen X, Jiang C (2022) Enhanced cornstalk decomposition by a psychrotrophic bacterial consortium comprising cellulose, hemicellulose, and lignin degraders with biochar as a carrier for carbonneutrality. Bioresour Technol 344:126259. https://doi.org/10.1016/j.biortech.2021.126259

    Article  CAS  PubMed  Google Scholar 

  53. Lu J, Yang Z, Xu W, Shi X, Guo R (2019) Enrichment of thermophilic and mesophilicmicrobial consortia for efficient degradation of corn stalk. J Environ Sci (China) 78:118–126. https://doi.org/10.1016/j.jes.2018.07.010

    Article  CAS  PubMed  Google Scholar 

  54. Zhang D, Wang Y, Zhang C, Zheng D, Guo P, Cui Z (2018) Characterization of a thermophilic lignocellulose-degrading microbial consortium with high extracellular xylanase activity. J Microbiol Biotechnol 28:305–313. https://doi.org/10.4014/jmb.1709.09036

    Article  CAS  PubMed  Google Scholar 

  55. Tahir AA, Mohd Barnoh NF, Yusof N, Mohd Said NN, Utsumi M, Yen AM, Hashim H, Mohd Noor MJM, Akhir FNM, Mohamad SE, Sugiura N, Othman N, Zakaria Z, Hara H (2019) Microbial diversity in decaying oil palm empty fruit bunches (opefb) and isolation of lignin-degrading bacteria from a tropical environment. Microbes Environ 34:161–168. https://doi.org/10.1264/jsme2.ME18117

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ohta Y, Nishi S, Haga T, Tsubouchi T, Hasegawa R, Konishi M, Nagano Y, Tsuruwaka Y, Shimane Y, Mori K, Usui K, Suda E, Tsutsui K, Nishimoto A, Fujiwara Y, Maruyama T, Hatada Y (2012) Screening and phylogenetic analysis of deep-sea bacteria capable of metabolizing lignin-derived aromatic compounds. OJMS 2:177–187. https://doi.org/10.4236/ojms.2012.24021

    Article  Google Scholar 

  57. Hu Y, Guo Y, Lai Q, Dong L, Huang Z (2020) Draconibacterium mangrovi sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 70:4816–4821. https://doi.org/10.1099/ijsem.0.004354

    Article  CAS  PubMed  Google Scholar 

  58. Zhou J, Ning D (2017) Stochastic community assembly: does it matter in microbial ecology? Microbiol Mol Biol Rev 81. https://doi.org/10.1128/mmbr.00002-17

  59. Tripathi S, Sharma P, Chandra R (2021) Degradation of organometallic pollutants of distillery wastewater by autochthonous bacterial community in biostimulation and bioaugmentation process. Bioresour Technol 338:125518. https://doi.org/10.1016/j.biortech.2021.125518

    Article  CAS  PubMed  Google Scholar 

  60. Puentes-Téllez PE, Falcao Salles J (2018) Construction of effective minimal active microbial consortia for lignocellulose degradation. Microb Ecol 76:419–429. https://doi.org/10.1007/s00248-017-1141-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Meng L, Xu C, Wu F, Huhe (2022) Microbial co-occurrence networks driven by low-abundance microbial taxa during composting dominate lignocellulose degradation. Sci Total Environ 845: 157197. https://doi.org/10.1016/j.scitotenv.2022.157197

  62. Morrissey EM, Gillespie JL, Morina JC, Franklin RB (2014) Salinity affects microbial activity and soil organic matter content in tidal wetlands. Glob Chang Biol 20:1351–1362. https://doi.org/10.1111/gcb.12431

    Article  PubMed  Google Scholar 

  63. Xia S, Song Z, Li Q, Guo L, Yu C, Singh BP, Fu X, Chen C, Wang Y, Wang H (2021) Distribution, sources, and decomposition of soil organic matter along a salinity gradient in estuarine wetlands characterized by C: N ratio, δ(13) C-δ(15) N, and lignin biomarker. Glob Chang Biol 27:417–434. https://doi.org/10.1111/gcb.15403

    Article  CAS  PubMed  Google Scholar 

  64. Oates NC, Abood A, Schirmacher AM, Alessi AM, Bird SM, Bennett JP, Leadbeater DR, Li Y, DowleAA, Liu S, Tymokhin VI, Ralph J, McQueen-Mason SJ, Bruce NC (2021) A multi-omics approach to lignocellulolytic enzyme discovery reveals a new ligninase activity from Parascedosporium putredinis NO1. Proc Natl Acad Sci U S A 118. https://doi.org/10.1073/pnas.2008888118

  65. Xun W, Li W, Xiong W, Ren Y, Liu Y, Miao Y, Xu Z, Zhang N, Shen Q, Zhang R (2019) Diversity-triggered deterministic bacterial assembly constrains community functions. Nat Commun 10:3833. https://doi.org/10.1038/s41467-019-11787-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by the National Natural Science Foundation of China (91951116) and National Key Research and Development Project (2019YFA0606704).

Author information

Authors and Affiliations

Authors

Contributions

LL conceived the study. MWW performed the experiments and analyzed the data. PQN performed in situ enrichment experiment and assisted the data analysis. LL interpreted the data and wrote the manuscript with input from MWW. All authors approved the final manuscript and declare no conflict of interest.

Corresponding author

Correspondence to Lu Lin.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2750 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, W., Lin, L. & Peng, Q. Origin, Selection, and Succession of Coastal Intertidal Zone-Derived Bacterial Communities Associated with the Degradation of Various Lignocellulose Substrates. Microb Ecol 86, 1589–1603 (2023). https://doi.org/10.1007/s00248-023-02170-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-023-02170-5

Keywords

Navigation