Skip to main content

Advertisement

Log in

First Report of Culturable Skin Bacteria in Melanophryniscus admirabilis (Admirable Redbelly Toad)

  • Notes and Short Communications
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Melanophryniscus admirabilis is a small toad, critically endangered with a microendemic distribution in the Atlantic Forest in southern Brazil. The amphibian skin microbiome is considered one of the first lines of defense against pathogenic infections, such as Batrachochytrium dendrobatidis (Bd). The knowledge of skin amphibian microbiomes is important to numerous fields, including species conservation, detection, and quantification of environmental changes and stressors. In the present study, we investigated, for the first time, cultivable bacteria in the skin of wild M. admirabilis, and detected Bd fungus by nested polymerase chain reaction (PCR) technique. Skin swab samples were collected from 15 wild M. admirabilis, and the isolation of bacteria was performed by means of different culture strategies. A total of 62 bacterial isolates being Bacillus (n = 22; 34.48%), Citrobacter (n = 10; 16.13%), and Serratia (n = 12; 19.35%) were more frequently isolated genera. Interestingly, all skin samples tested were Bd negative. Some bacterial genera identified in our study might be acting in a synergic relationship and protecting them against the Bd fungus. In addition, these bacteria may play an essential role in maintaining this species in an environment modulated by anthropic actions. This first report of skin cultivable bacteria from M. admirabilis natural population improves our knowledge of skin amphibian microbiomes, contributing to a better understanding of their ecology and how this species has survived in an environment modulated by anthropic action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Frost D (2022) Amphibian species of the world: an online reference. Version 6.1. American Museum of Natural History, New York, USA. https://amphibiansoftheworld.amnh.org/index.php. Accessed 07 March 2022

  2. ICMBio (2018) Livro Vermelho da Fauna Brasileira Ameaçada de Extinção: Volume V— Anfíbios. Instituto Chico Mendes de Conservação da Biodiversidade (Org) Livro Vermelho da Fauna Brasileira Ameaçada de Extinção, Brasília. https://www.gov.br/icmbio/pt-br/centrais-de-conteudo/publicacoes/publicacoes-diversas/livro_vermelho_2018_vol5.pdf. Accessed 7 Mar 2022

  3. IUCN (2021) The IUCN red list of threatened species. Version 2021–3. International Union for Conservation of Nature. https://www.iucnredlist.org/. Accessed 7 Mar 2022

  4. IUCN (2013) Melanophryniscus admirabilis. The IUCN red list of threatened species. The International Union for Conservation of Nature Amphibians on the IUCN red list of threatened species. https://www.iucnredlist.org/species/135993/44846478. Accessed 7 Mar 2022

  5. ICMBio (2012) Sumário Executivo do Plano de Ação Nacional para Conservação de Anfíbios e Répteis Ameaçados da Região Sul do Brasil. Instituto Chico Mendes de Conservação da Biodiversidade (Org). https://www.gov.br/icmbio/pt-br/assuntos/biodiversidade/pan/pan-herpetofauna-do-sul/2-ciclo/pan-herpetofauna-do-sul-sumario.pdf. Accessed 7 Mar 2022

  6. Fonte LFM, Abadie M, Bordignon DW, Mendes T, Zank C, Krob A, Kindel A, Borges-Martins (2021) Admirable Redbelly Toad: the amphibian that defied a hydropower plant. In: Elias S (ed) Reference Module in Earth Systems and Environmental Sciences, Elsevier. https://doi.org/10.1016/B978-0-12-821139-7.00100-8

  7. da Silva PR, Borges-Martins M, Oliveira GT (2020) Melanophryniscus admirabilis tadpoles’ responses to sulfentrazone and glyphosate-based herbicides: an approach on metabolism and antioxidant defenses. Environ Sci Pollut Res 28(4):4156–4172. https://doi.org/10.1007/s11356-020-10654-x

    Article  CAS  Google Scholar 

  8. Mann MB, Prichula J, De Castro IMS, Severo JM, Abadie M, De Freitas Lima TM, Caorsi V, Borges-Martins M, Frazzon J, Frazzon APG (2021) The oral bacterial community in Melanophryniscus admirabilis (Admirable Red-Belly Toads): implications for conservation. Microorganisms 9(2):220. https://doi.org/10.3390/microorganisms9020220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bahrndorff S, Alemu T, Alemneh T, Lund Nielsen J (2016) The microbiome of animals: implications for conservation biology. Int J Genomics 2016:5304028. https://doi.org/10.1155/2016/5304028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pask JD, Woodhams DC, Louise A, Rollins-Smith LA (2012) The ebb and flow of antimicrobial skin peptides defends northern leopard frogs (Rana pipiens) against chytridiomycosis. Glob Chang Biol 18:1231–1238. https://doi.org/10.1111/j.1365-2486.2011.02622.x

    Article  Google Scholar 

  11. Colombo BM, Scalvenzi T, Benlamara S, Pollet N (2015) Microbiota and mucosal immunity in amphibians. Front Immunol 6:111. https://doi.org/10.3389/fimmu.2015.00111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Medina D, Hughey MC, Becker MH, Walke JB, Umile TP, Burzynski EA, Iannetta A, Minbiole KPC, Belden LK (2017) Variation in metabolite profiles of amphibian skin bacterial communities across elevations in the neotropics. Microb Ecol 74(1):227–238. https://doi.org/10.1007/s00248-017-0933-y

    Article  CAS  PubMed  Google Scholar 

  13. Jani AJ, Briggs CJ (2014) The pathogen Batrachochytrium dendrobatidis disturbs the frog skin microbiome during a natural epidemic and experimental infection. PNAS 111:E5049–E5058. https://doi.org/10.1073/pnas.1412752111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rebollar EA, Martínez-Ugalde E, Orta AH (2020) The amphibian skin microbiome and its protective role against chytridiomycosis. Herpetologica 76(2):167–177. https://doi.org/10.1655/0018-0831-76.2.167

    Article  Google Scholar 

  15. Bates KA, Clare FC, O’Hanlon S, Bosch J, Brookes L, Hopkins K, McLaughlin EJ, Daniel O, Garner TWJ, Fisher MC, Harrison XA (2018) Amphibian chytridiomycosis outbreak dynamics are linked with host skin bacterial community structure. Nat Commun 9:1–11. https://doi.org/10.1038/s41467-018-02967-w

    Article  CAS  Google Scholar 

  16. Woodhams DC, Rollins-Smith LA, Reinert LK, Lam BA, Harris RN, Briggs CJ, Vredenburg VT, Patel BT, Caprioli RM, Chaurand P, Hunziker P, Bigler L (2020) Probiotics modulate a novel amphibian skin defense peptide that is antifungal and facilitates growth of antifungal bacteria. Microb Ecol 79:192–202. https://doi.org/10.1007/s00248-019-01385-9

    Article  CAS  PubMed  Google Scholar 

  17. Berger L, Speare R, Daszak P, Green DE, Cunningham AA, Goggin CL, Slocombe R, Ragan MA, Hyatt AD, McDonald KR, Hines HB, Lips KR, Marantelli G, Parkes H (1998) Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. PNAS 95:9031–9036. https://doi.org/10.1073/pnas.95.15.9031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Olson DH, Aanensen DM, Ronnenberg KL, Powell CI, Walker SF, Bielby J, Garner TWJ, Weaver G, Fisher MC (2013) Mapping the global emergence of Batrachochytrium dendrobatidis, the amphibian chytrid fungus. PLoS One 8:e56802–e56802. https://doi.org/10.1371/journal.pone.0056802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Proença DN, Fasola E, Lopes I, Morais PV (2021) Characterization of the skin cultivable microbiota composition of the frog Pelophylax perezi inhabiting different environments. Int J Environ Res Public Health 18(5):2585. https://doi.org/10.3390/ijerph18052585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rebollar EA, Hughey MC, Medina D, Harris RN, Ibáñez R, Belden LK (2016) Skin bacterial diversity of Panamanian frogs is associated with host susceptibility and presence of Batrachochytrium dendrobatidis. ISME J 10:1682–1695. https://doi.org/10.1038/ismej.2015.234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bletz MC, Myers J, Woodhams DC, Rabemananjara FC, Rakotonirina A, Weldon C, Edmonds D, Vences M, Harris RN (2017) Estimating herd immunity to amphibian chytridiomycosis in Madagascar based on the defensive function of amphibian skin bacteria. Front Microbiol 8:1751. https://doi.org/10.3389/fmicb.2017.01751

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sumi CD, Yang BW, Yeo IC, Hahm YT (2015) Antimicrobial peptides of the genus Bacillus: a new era for antibiotics. Can J Microbiol 61(2):93–103. https://doi.org/10.1139/cjm-2014-0613

    Article  CAS  PubMed  Google Scholar 

  23. Bartel LC, Abrahamovich E, Mori C, López AC, Alippi AM (2020) Bacillus and Brevibacillus strains as potential antagonists of Paenibacillus larvae and Ascosphaera apis. J Apic Res 58(1):117–132. https://doi.org/10.1080/00218839.2018.1495439

    Article  Google Scholar 

  24. Rebollar EA, Jani AJ, Guilherme Becker C, Harrison XA, Price SJ, Hopkins K, Leung WTM, Sergeant C, Garner TWJ (2019) Diversity-stability dynamics of the amphibian skin microbiome and susceptibility to a lethal viral pathogen. Front Microbiol 10:2883. https://doi.org/10.3389/fmicb.2019.02883

    Article  Google Scholar 

  25. Montel-Mendoza G, Pasteris SE, Ale CE, Otero MC, Bühler MI, Nader-Macías MEF (2012) Cultivable microbiota of Lithobates catesbeianus and advances in the selection of lactic acid bacteria as biological control agents in raniculture. Res Vet Sci 93:1160–1167. https://doi.org/10.1016/j.rvsc.2012.05.007

    Article  Google Scholar 

  26. Coutinho SDA, Burke JC, de Paula CD, Rodrigues MT, Catão-Dias JL (2015) The use of singleplex and nested PCR to detect Batrachochytrium dendrobatidis in free-living frogs Braz. J Microbiol 46:551–555. https://doi.org/10.1590/S1517-838246246220140110

    Article  Google Scholar 

  27. Hammer O, Harper DAT, Ryan PD (2001) Past: Paleontological Statistics Software package for education and data analysis. University of Oslo, Norway

    Google Scholar 

  28. Woodhams DC, Alford RA, Antwis RE, Archer H, Becker MH, Belden LK, Bell SC, Bletz M, Daskin JH, Davis LR, Flechas SV, Lauer A, Gonzalez A, Harris RN, Holden WM, Hughey MC, Ibáñez R, Knight R, Kueneman J, Rabemananjara F, Reinert LK, Rollins-Smith LA, Roman-Rodriguez F, Shaw SD, Walke JB, McKenzie V (2015) Antifungal isolates database of amphibian skin-associated bacteria and function against emerging fungal pathogens. Ecology 96:595–595. https://doi.org/10.1890/14-1837.1

    Article  Google Scholar 

  29. Woodhams DC, LaBumbard BC, Barnhart KL, Becker MH, Bletz MC, Escobar LA, Flechas SV, Forman ME, Iannetta AA, Joyce MD, Rabemananjara F, Gratwicke B, Vences M, Minbiole KPC (2018) Prodigiosin, violacein, and volatile organic compounds produced by widespread cutaneous bacteria of amphibians can inhibit two Batrachochytrium fungal pathogens. Microb Ecol 75:1049–1062. https://doi.org/10.1007/s00248-017-1095-7

    Article  CAS  PubMed  Google Scholar 

  30. Flechas SV, Acosta-González A, Escobar LA, Kueneman JG, Sánchez-Quitian ZA, Parra-Giraldo CM, Rollins-Smith LA, Reinert LK, Vredenburg VT, Amézquita A, Woodhams DC (2019) Microbiota and skin defense peptides may facilitate coexistence of two sympatric Andean frog species with a lethal pathogen. ISME J 13:361–373. https://doi.org/10.1038/s41396-018-0284-9

    Article  CAS  PubMed  Google Scholar 

  31. Dökenel G, Özer S (2019) Bacterial agents isolated from cultured marsh frog (Pelophylax ridibundus, Pallas 1771). EgeJFAS 36:115–124. https://doi.org/10.12714/egejfas.2019.36.2.03

    Article  Google Scholar 

  32. Padilla D, Acosta F, Ramos-Vivas J, Grasso V, Bravo J, El Aamri F, Real F (2015) The pathogen Hafnia alvei in veterinary medicine: a review. J Appl Anim Res 43:231–235. https://doi.org/10.1080/09712119.2014.963086

    Article  Google Scholar 

  33. Giannattasio-Ferraz S, Maskeri L, Oliveira AP, Barbosa-Stancioli EF, Putonti C (2020) Draft genome sequence of Enterobacter asburiae UFMG-H9, isolated from urine from a healthy bovine heifer (Gyr Breed). Microbiol Resour Announc 9:e00385-20. https://doi.org/10.1128/mra.00385-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou C, Ge N, Guo J, Zhu L, Ma Z, Cheng S, Wang J (2019) Enterobacter asburiae reduces cadmium toxicity in maize plants by repressing iron uptake-associated pathways. J Agric Food Chem 67:10126–10136. https://doi.org/10.1021/acs.jafc.9b03293

    Article  CAS  PubMed  Google Scholar 

  35. Walke JB, Becker MH, Loftus SC, House LL, Cormier G, Jensen RV, Belden LK (2014) Amphibian skin may select for rare environmental microbes. ISME J 8:2207–2217. https://doi.org/10.1038/ismej.2014.77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Loudon AH, Holland JA, Umile TP, Burzynski EA, Minbiole KPC, Harris RN (2014) Interactions between amphibians’ symbiotic bacteria cause the production of emergent anti-fungal metabolites. Front Microbiol 5:441. https://doi.org/10.3389/fmicb.2014.00441

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bresciano JC, Salvador CA, Paz-y-Miño C, Parody-Merino AM, Bosch J, Woodhams DC (2015) Variation in the presence of anti-Batrachochytrium dendrobatidis bacteria of amphibians across life stages and elevations in Ecuador. EcoHealth 12:310–319. https://doi.org/10.1007/s10393-015-1010-y

    Article  CAS  PubMed  Google Scholar 

  38. Daly JW, Wilham JM, Spande TF, Garraffo HM, Gil RR, Silva GL, Vaira M (2007) Alkaloids in bufonid toads (Melanophryniscus): temporal and geographic determinants for two Argentinian species. J Chem Ecol 33:871–887. https://doi.org/10.1007/s10886-007-9261-x

    Article  CAS  PubMed  Google Scholar 

  39. Varga JFA, Bui-Marinos MP, Katzenback BA (2019) Frog skin innate immune defenses: sensing and surviving pathogens. Front Immunol 9:3128. https://doi.org/10.3389/fimmu.2018.03128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jani AJ, Briggs CJ (2018) Host and aquatic environment shape the amphibian skin microbiome but effects on downstream resistance to the pathogen Batrachochytrium dendrobatidis are variable. Front Microbiol 9:487–487. https://doi.org/10.3389/fmicb.2018.00487

    Article  PubMed  PubMed Central  Google Scholar 

  41. Daszak P, Strieby A, Cunningham AA, Longcore JE, Brown CC, Porter D (2004) Experimental evidence that the bullfrog (Rana caterbeiana) is a potential carrier of chytridiomycosis, an emerging fungal disease of amphibians. Herpetol J 14:201–207

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to ICMBio for the collection permits (No. 40004-5 and 10341-1); Prof. Selene Dall'Acqua Coutinho for the molecular biology supplies to detect the presence of Bd fungus; Debora Bordignon, and Pedro Augusto Thomas for helping us in the field; Dr. Michelle Bertoni Mann and Rosana Huff for their support in the molecular biology analysis.

Funding

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico do Brasil (#309769/2020–5, and #305495/2018–6) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) of the Brazilian government.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Julia Ienes-Lima, Janira Prichula, and Michelle Abadie. The first draft of the manuscript was written by Julia Ienes-Lima, Janira Prichula, Márcio Borges-Martins, and Ana Paula Guedes Frazzon and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ana Paula Guedes Frazzon.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ienes-Lima, J., Prichula, J., Abadie, M. et al. First Report of Culturable Skin Bacteria in Melanophryniscus admirabilis (Admirable Redbelly Toad). Microb Ecol 86, 756–761 (2023). https://doi.org/10.1007/s00248-022-02069-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-02069-7

Keyword

Navigation