Skip to main content
Log in

Epichloë Endophyte Infection Changes the Root Endosphere Microbial Community Composition of Leymus Chinensis Under Both Potted and Field Growth Conditions

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Epichloë endophytes can not only affect the growth and resistance of the host plant but also change the biotic and abiotic properties of the soil where the host is situated. Here, we used endophyte-infected (EI) and endophyte-free (EF) Leymus chinensis as plant materials, to study the microbial diversity and composition in the host root endosphere and rhizosphere soil under both pot and field conditions. The results showed that endophyte infection did not affect the diversity of either bacteria or fungi in the root zone. There were significant differences in both bacterial and fungal communities between the root endosphere and the rhizosphere, and between the field and the pot, while endophytes only affected root endosphere microbial communities. The bacterial families affected by endophyte infection changed from 29.07% under field conditions to 40% under pot conditions. In contrast, the fungal families affected by endophyte infection were maintained at nearly 50% under both field and pot conditions. That is to say, bacterial communities in the root endosphere were more strongly affected by environmental conditions, and in comparison, the fungal communities were more strongly affected by species specificity. Endophytes significantly affected the fungal community composition of the host root endosphere in both potted and field plants, only the effect was more obvious in potted plants. Endophyte infection increased the abundance of three fungal families (Thelebolaceae, Herpotrichiellaceae and Trimorphomycetaceae) under both field and potted conditions. In potted plants, endophytes also altered the dominant fungi from pathogenic Pleosporales to saprophytic Chaetomiaceae. Endophyte infection increased the relative abundance of arbuscular mycorrhizal fungi and saprophytic fungi, especially under potted conditions.

Overall, endophytes significantly affected the fungal community composition of the host root endosphere in both potted and field plants. Endophytes had a greater impact on root endosphere microorganisms than the rhizosphere, a greater impact on fungal communities than bacteria, and a greater impact on root endosphere microorganisms under potted conditions than at field sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be provided upon acceptance of manuscript.

References

  1. Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486. https://doi.org/10.1016/j.tplants.2012.04.001

    Article  CAS  PubMed  Google Scholar 

  2. Chen W, Zhou H, Wu Y, Li Y, Xue S (2021) Plant-mediated effects of long-term warming on soil microorganisms on the Qinghai-Tibet Plateau. Catena 204:105391

    Article  Google Scholar 

  3. Qiao YJ, Gu CZ, Zhu HT, Wang D, Zhang MY, Zhang YX, Yang CR, Zhang YJ (2020) Allelochemicals of Panax notoginseng and their effects on various plants and rhizosphere microorganisms. Plant Divers 42:11

    Article  Google Scholar 

  4. Lapkina EZ, Saveleva EE, Tyrranen LS, Bulgakova NA (2021) The study of population dynamics of ecological groups of microorganisms epiphytic microbiota stellaria media and urtica dioica. Экосистемы 25:22–29. https://doi.org/10.37279/2414-4738-2021-25-22-29

  5. Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA (2000) Are tropical fungal endophytes hyperdiverse. Ecol Lett 3:267–274

    Article  Google Scholar 

  6. Clay K (1989) Clavicipitaceolls endophytes of grasses: their potential as biocontrol agents. Mycol Res 92:1–12

    Article  Google Scholar 

  7. Muller CB, Krauss J (2005) Symbiosis between grasses and asexual fungal endophytes. Curr Opin Plant Biol 8:450–456. https://doi.org/10.1016/j.pbi.2005.05.007

    Article  CAS  PubMed  Google Scholar 

  8. Chen X, Luo X, Fan M, Zeng W, Yang C, Wu J, Zhao C, Zhang Y, Zhao P (2019) Endophytic fungi from the branches of Camellia taliensis (W. W. Smith) Melchior, a widely distributed wild tea plant. World J Microbiol Biotechnol 35:113

    Article  CAS  PubMed  Google Scholar 

  9. Shan L, Shakoor A, Wubet T, Zhang N, Liang Y, Ma K (2018) Fine-scale variations of fungal community in a heterogeneous grassland in Inner Mongolia: Effects of the plant community and edaphic parameters. Soil Biol Biochem 122:104–110. https://doi.org/10.1016/j.soilbio.2018.04.007

    Article  CAS  Google Scholar 

  10. Swamy N, Sandhu SS (2021) Fungal endophytes: Entry, establishment, diversity, future prospects in agriculture. Fungi Bio-Prospects in Sustainable Agriculture, Environment and Nano-Technology 1:97–105. https://doi.org/10.1016/B978-0-12-821394-0.00004-4

  11. Vázquez-de-Aldana BR, Zabalgogeazcoa I, García-Ciudad A, García-Criado B (2013) An Epichloë endophyte affects the competitive ability of Festuca rubra against other grassland species. Plant Soil 362:201–213. https://doi.org/10.1007/s11104-012-1283-7

    Article  CAS  Google Scholar 

  12. Zhang M, Wang H, Hussain M, Qi J, Wu G (2020) Identification and functional assessment of endophytic bacterial diversity in Ageratina adenophora (Sprengel) and their interactions with the host plant. South Afr J Bot 134:99–108. https://doi.org/10.1016/j.sajb.2020.07.038

    Article  CAS  Google Scholar 

  13. Ganie SA, Bhat JA, Devoto A (2021) The influence of endophytes on rice fitness under environmental stresses. Plant Molecular Biology. https://doi.org/10.1007/s11103-021-01219-8

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fuchs B, Krischke M, Mueller MJ, Krauss J (2016) Herbivore-specific induction of defence metabolites in a grass–endophyte association. Funct Ecol 31:318–324. https://doi.org/10.1111/1365-2435.12755

    Article  Google Scholar 

  15. Li F, Guo Y, Christensen MJ, Gao P, Li Y, Duan T (2018) An arbuscular mycorrhizal fungus and Epichloe festucae var. lolii reduce Bipolaris sorokiniana disease incidence and improve perennial ryegrass growth. Mycorrhiza 28:159–169. https://doi.org/10.1007/s00572-017-0813-9

    Article  PubMed  Google Scholar 

  16. Zhang Y, Yu X, Zhang W, Lang D, Zhang X, Cui G, Zhang X (2019) Interactions between endophytes and plants: beneficial effect of endophytes to ameliorate biotic and abiotic stresses in plants. J Plant Biol 62:1–13

    Article  Google Scholar 

  17. Liu Q, Parsons AJ, Xue H, Fraser K, Ryan GD, Newman JA, Rasmussen S (2011) Competition between foliar Neotyphodium lolii endophytes and mycorrhizal Glomus spp. fungi in Lolium perenne depends on resource supply and host carbohydrate content. Funct Ecol 25:910–920. https://doi.org/10.1111/j.1365-2435.2011.01853.x

    Article  Google Scholar 

  18. Mack KML, Rudgers JA (2008) Balancing multiple mutualists: asymmetric interactions among plants, arbuscular mycorrhizal fungi, and fungal endophytes. Oikos 117:310–320. https://doi.org/10.1111/j.2007.0030-1299.15973.x

    Article  Google Scholar 

  19. Müller J (2003) Artificial infection by endophytes affects growth and mycorrhizal colonisation of Lolium perenne. Funct Plant Biol 30:419–424

    Article  PubMed  Google Scholar 

  20. Omacini M, Eggers T, Bonkowski M, Gange AC, Jones TH (2006) Leaf endophytes affect mycorrhizal status and growth of co-infected and neighbouring plants. Funct Ecol 20:226–232

    Article  Google Scholar 

  21. Zhou Y, Li X, Gao Y, Liu H, Gao YB, van der Heijden MGA, Ren AZ, Bennett A (2018) Plant endophytes and arbuscular mycorrhizal fungi alter plant competition. Funct Ecol 32:1168–1179. https://doi.org/10.1111/1365-2435.13084

    Article  Google Scholar 

  22. Zhou Y, Li X, Qin J, Liu H, Chen W, Niu Y, Ren A, Gao Y (2016) Effects of simultaneous infections of endophytic fungi and arbuscular mycorrhizal fungi on the growth of their shared host grass Achnatherum sibiricum under varying N and P supply. Fungal Ecol 20:56–65. https://doi.org/10.1016/j.funeco.2015.11.004

    Article  Google Scholar 

  23. Larimer AL, Bever JD, Clay K (2012) Consequences of simultaneous interactions of fungal endophytes and arbuscular mycorrhizal fungi with a shared host grass. Oikos 121:2090–2096. https://doi.org/10.1111/j.1600-0706.2012.20153.x

    Article  Google Scholar 

  24. Yan ZC, Ying-De LI, Cheng WJ, Gao P, Guo YE, Duan TY (2018) Effects of AM fungi and grass endophyte on the growth of ryegrass under different salt concentrations. Grassl Turf 38:63–70. https://doi.org/10.13817/j.cnki.cyycp.2018.01.010

  25. Arrieta AM, Iannone LJ, Scervino JM, Vignale MV, Novas MV (2015) A foliar endophyte increases the diversity of phosphorus-solubilizing rhizospheric fungi and mycorrhizal colonization in the wild grass Bromus auleticus. Fungal Ecol 17:146–154. https://doi.org/10.1016/j.funeco.2015.07.001

    Article  Google Scholar 

  26. Vignale MV, Iannone LJ, Pinget AD, De Battista JP, Novas MV (2015) Effect of epichloid endophytes and soil fertilization on arbuscular mycorrhizal colonization of a wild grass. Plant Soil 405:279–287. https://doi.org/10.1007/s11104-015-2522-5

    Article  CAS  Google Scholar 

  27. Slaughter LC, Nelson JA, Carlisle AE, Bourguignon M, Dinkins RD, Phillips TD, McCulley RL (2019) Tall fescue and E. coenophiala genetics influence root-associated soil fungi in a temperate grassland. Front Microbiol 10:2380. https://doi.org/10.3389/fmicb.2019.02380

    Article  PubMed  PubMed Central  Google Scholar 

  28. Casas C, Omacini M, Montecchia MS, Correa OS (2011) Soil microbial community responses to the fungal endophyte Neotyphodium in Italian ryegrass. Plant Soil 340:347–355. https://doi.org/10.1007/s11104-010-0607-8

    Article  CAS  Google Scholar 

  29. Buyer JS, Zuberer DA, Nichols KA, Franzluebbers AJ (2011) Soil microbial community function, structure, and glomalin in response to tall fescue endophyte infection. Plant Soil 339:401–412. https://doi.org/10.1007/s11104-010-0592-y

    Article  CAS  Google Scholar 

  30. Iqbal J, Siegrist JA, Nelson JA, McCulley RL (2012) Fungal endophyte infection increases carbon sequestration potential of southeastern USA tall fescue stands. Soil Biol Biochem 44:81–92. https://doi.org/10.1016/j.soilbio.2011.09.010

    Article  CAS  Google Scholar 

  31. Mahmud K, Lee K, Hill N, Missaoui A (2021) Influence of tall fescue Epichloë endophytes on rhizosphere soil microbiome. Microorganisms 9:1–22. https://doi.org/10.21203/rs.3.rs-614409/v1

  32. Jain A, Chakraborty J, Das S (2020) Underlying mechanism of plant–microbe crosstalk in shaping microbial ecology of the rhizosphere. Acta Physiol Plant 42:8

    Article  Google Scholar 

  33. Hardoim PR, van Overbeek LS, Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471. https://doi.org/10.1016/j.tim.2008.07.008

    Article  CAS  PubMed  Google Scholar 

  34. Coleman-Derr D, Desgarennes D, Fonseca-Garcia C, Gross S, Clingenpeel S, Woyke T, North G, Visel A, Partida-Martinez LP, Tringe SG (2016) Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytol 209:798–811. https://doi.org/10.1111/nph.13697

    Article  CAS  PubMed  Google Scholar 

  35. Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, Del Rio TG, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90. https://doi.org/10.1038/nature11237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fang M, Xu X, Tang M, Tang J (2019) Structure and composition variation of the root-microbiota of Rhododendron delavayi. Acta Microbiol Sin (in Chinese) 59:1522–1534. https://doi.org/10.13343/j.cnki.wsxb.20180449

    Article  Google Scholar 

  37. Zhong R, Xia C, Ju Y, Li N, Zhang X, Nan Z, Christensen MJ (2018) Effects of Epichloë gansuensis on root-associated fungal communities of Achnatherum inebrians under different growth conditions. Funct Ecol 31:29–36. https://doi.org/10.1016/j.funeco.2017.10.005

    Article  Google Scholar 

  38. Zhu MJ, Ren AZ, Wen W, Gao YB (2013) Diversity and taxonomy of endophytes from Leymus chinensis in the Inner Mongolia steppe of China. FEMS Microbiol Lett 340:135–145. https://doi.org/10.1111/1574-6968.12083

    Article  CAS  PubMed  Google Scholar 

  39. Tao J, Yayu W, Yueying H, Jin X, Pengfan Z, Nian W, Xin L, Haiyan C, Guang L, Honggang J (2017) Taxonomic structure and functional association of foxtail millet root microbiome. Gigascience 6:10. https://doi.org/10.1093/gigascience/giy099

    Article  Google Scholar 

  40. Bram B, Michiel O, Sofie T, Sascha T, Nele W, Wout B, Jaco V (2016) Performance of 16s rDNA primer pairs in the study of rhizosphere and endosphere bacterial microbiomes in metabarcoding studies. Front Microbiol 7:650. https://doi.org/10.3389/fmicb.2016.00650

    Article  Google Scholar 

  41. Lu K (1999) Analytical methods of soil and agricultural chemistry. China Agricultural Science and Technology Press, Beijing

    Google Scholar 

  42. Anderson JM, Ingram J (1994) Tropical soil biology and fertility: a handbook of methods. Soil Sci 157:265

    Article  Google Scholar 

  43. Bulgarelli D, Garrido-Oter R, Münch P, Weiman A, DröGe J, Pan Y, Mchardy A, Schulze-Lefert P (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17:392–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen B, Kaiqian, Chao S, Arunprasanna A, Xili L, Yong (2018) Gut bacterial and fungal communities of the domesticated silkworm (Bombyx mori) and wild mulberry-feeding relatives. ISME J Emultidiscip J Microb Ecol 12:2252–2262

    CAS  Google Scholar 

  45. Roberts EL, Ferraro A (2015) Rhizosphere microbiome selection by Epichloë endophytes of Festuca arundinacea. Plant Soil 396:229–239. https://doi.org/10.1007/s11104-015-2585-3

    Article  CAS  Google Scholar 

  46. Rojas X, Guo J, Leff JW, McNear DH Jr, Fierer N, McCulley RL (2016) Infection with a shoot-specific fungal endophyte (Epichloë) alters tall fescue soil microbial communities. Microb Ecol 72:197–206. https://doi.org/10.1007/s00248-016-0750-8

    Article  CAS  PubMed  Google Scholar 

  47. Fitter AH, Helgason T, Hodge A (2011) Nutritional exchanges in the arbuscular mycorrhizal symbiosis: Implications for sustainable agriculture. Fungal Biol Rev 25:68–72. https://doi.org/10.1016/j.fbr.2011.01.002

    Article  Google Scholar 

  48. Alzahrani A (2017) Communities of arbuscular mycorrhizal fungi in salt marsh habitats: diversity, structure, and ecosystem function. Dissertation, University of Essex

  49. Heijden MGAVD, Horton TR (2010) Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J Ecol 97:1139–1150. https://doi.org/10.1111/j.1365-2745.2009.01570.x

    Article  Google Scholar 

  50. Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Hogberg P, Stenlid J, Finlay RD (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173:611–620. https://doi.org/10.1111/j.1469-8137.2006.01936.x

    Article  CAS  PubMed  Google Scholar 

  51. Bell-Dereske L, Takacs-Vesbach C, Kivlin SN, Emery SM, Rudgers JA (2017) Leaf endophytic fungus interacts with precipitation to alter belowground microbial communities in primary successional dunes. FEMS Microbiol Ecol 93.https://doi.org/10.1093/femsec/fix036

  52. Zhong R, Xia C, Ju Y, Zhang X, Duan T, Nan Z, Li C (2019) A foliar Epichloë endophyte and soil moisture modified belowground arbuscular mycorrhizal fungal biodiversity associated with Achnatherum inebrians. Plant Soil. https://doi.org/10.1007/s11104-019-04365-7

    Article  Google Scholar 

  53. Al-Hatmi AM, Meis JF, de Hoog GS (2016) Fusarium: Molecular diversity and intrinsic drug resistance. PLoS Pathog 12:e1005464. https://doi.org/10.1371/journal.ppat.1005464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Azegami K, Nishiyama K, Watanabe Y, Kadota I, Fukazawa C (1987) Pseudomonas plantarii sp. nov., the causal agent of rice seedling blight. Int J Syst Bacteriol 37:144–152. https://doi.org/10.1099/00207713-37-2-144

    Article  Google Scholar 

  55. Urakami T, Ito-Yoshida C, Araki H, Kijima T, Suzuki KI, Komagata K (1994) Transfer of Pseudomonas plantarii and Pseudomonas glumae to Burkholderia as Burkholderia spp. and Description of Burkholderia vandii sp. nov. Int J Syst Bacteriol 44:235–245

    Article  CAS  Google Scholar 

  56. Wang C, Zhang M, Huang N, Ma J (2017) Review on the application of Photosynthetic bacteria. Anhui AgriSci (in Chinese) 23. https://doi.org/10.16377/j.cnki.issn1007-7731.2017.10.012

  57. Li XZ, Fang AG, Li CJ, Nan ZB (2015) Advances in the researches on the effects of grass endophytes on other microbes. Acta Ecol Sin 35:1660–1671

    Google Scholar 

  58. Tian P, Nan Z, Li C, Spangenberg G (2008) Effect of the endophyte Neotyphodium lolii on susceptibility and host physiological response of perennial ryegrass to fungal pathogens. Eur J Plant Pathol 122:593–602. https://doi.org/10.1007/s10658-008-9329-7

    Article  Google Scholar 

  59. Promputtha I, Lumyong S, Dhanasekaran V, McKenzie EH, Hyde KD, Jeewon R (2007) A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microb Ecol 53:579–590. https://doi.org/10.1007/s00248-006-9117-x

    Article  PubMed  Google Scholar 

  60. Promputtha I, Hyde KD, McKenzie EHC, Peberdy JF, Lumyong S (2010) Can leaf degrading enzymes provide evidence that endophytic fungi becoming saprobes? Fungal Divers 41:89–99. https://doi.org/10.1007/s13225-010-0024-6

    Article  Google Scholar 

  61. Bell-Dereske L, Gao X, Masiello CA, Sinsabaugh RL, Rudgers JA (2016) Plant–fungal symbiosis affects litter decomposition during primary succession. Oikos 126:801–811. https://doi.org/10.5061/dryad.11nr8

    Article  Google Scholar 

  62. Hannula SE, Kielak AM, Steinauer K, Huberty M, Heinen R, Bezemer TM (2019) Time after time temporal variation in the effects of grass and forb species on soil bacterial and fungal communities Ecological and Evolutionary. Science 10:e02635-e2719. https://doi.org/10.1128/mBio

    Article  Google Scholar 

  63. Zhou Y, Zheng Y, Zhu J, Li X, Ren Z, Gao B (2014) Effects of fungal endophyte infection on soil properties and microbial communities in the host grass habitat. Chin J Plant Ecol 38:54–61

    Article  Google Scholar 

  64. Zhong R, Zhou R, Zhang Q, Xia C, Li N (2017) Effect of Epichloe gansuensis on arbuscular mycorrhizal fungi spore diversity in rhizophere soil of drunken horse grass under different growth conditions. Pratacult Sci (in Chinese) 34:1627–1634. https://doi.org/10.11829/j.issn.1001-0629.2017-0067

    Article  Google Scholar 

  65. Prestidge RA (1993) Causes and control of perennial ryegrass staggers in New Zealand. Ecosyst Environ 44:283–300

    Article  Google Scholar 

  66. Schardl CL, Grossman RB, Nagabhyru P, Faulkner JR, Mallik UP (2007) Loline alkaloids: Currencies of mutualism. Phytochemistry 68:980–996. https://doi.org/10.1016/j.phytochem.2007.01.010

    Article  CAS  PubMed  Google Scholar 

  67. Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340. https://doi.org/10.1146/annurev.arplant.55.031903.141735

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the support of Abaga banner grassland workstation for their invaluable assistance on this experiment.

Funding

This work was supported by the National Natural Science Foundation of China (31971425).

Author information

Authors and Affiliations

Authors

Contributions

Jing Chen was involved in investigation, visualization, writing—original draft. Yongkang Deng performed data curation. Xinhe Yu contributed to software. Guanghong Wu provided methodology, review & editing. Yubao Gao performed conceptualization. Anzhi Ren did conceptualization, funding acquisition, supervision, writing—review & editing.

Corresponding authors

Correspondence to Guanghong Wu or Anzhi Ren.

Ethics declarations

Conflicts of interests

The authors declare that they have no known competing financial interests or personal relationships that could influence the work reported in this paper.

Ethics approval

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Deng, Y., Yu, X. et al. Epichloë Endophyte Infection Changes the Root Endosphere Microbial Community Composition of Leymus Chinensis Under Both Potted and Field Growth Conditions. Microb Ecol 85, 604–616 (2023). https://doi.org/10.1007/s00248-022-01983-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-01983-0

Keywords

Navigation