Skip to main content
Log in

Detection and Quantification of Candidatus Methanoperedens-Like Archaea in Freshwater Wetland Soils

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Candidatus Methanoperedens-like archaea, which can use multiple electron acceptors (nitrate, iron, manganese, and sulfate) for anaerobic methane oxidation, could play an important role in reducing methane emissions from freshwater wetlands. Currently, very little is known about the distribution and community composition of Methanoperedens-like archaea in freshwater wetlands, particularly based on their alpha subunit of methyl-coenzyme M reductase (mcrA) genes. Here, the community composition, diversity, and abundance of Methanoperedens-like archaea were investigated in a freshwater wetland through high-throughput sequencing and quantitative PCR on their mcrA genes. A large number of Methanoperedens-like mcrA gene sequences (119,250) were recovered, and a total of 31 operational taxonomic units (OTUs) were generated based on 95% sequence similarity cut-off. The majority of Methanoperedens-like sequences can be grouped into three distinct clusters that were closely associated with the known Methanoperedens species which can couple anaerobic methane oxidation to nitrate or iron reduction. The community composition of Methanoperedens-like archaea differed significantly among different sampling sites, and their mcrA gene abundance was 1.49 × 106 ~ 4.62 × 106 copies g−1 dry soil in the examined wetland. In addition, the community composition of Methanoperedens-like archaea was significantly affected by the soil water content, and the archaeal abundance was significantly positively correlated with the water content. Our results suggest that the mcrA gene is a good biomarker for detection and quantification of Methanoperedens-like archaea, and provide new insights into the distribution and environmental regulation of these archaea in freshwater wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L, Cameron-Smith P, Castaldi S, Chevallier F, Feng L, Fraser A, Heimann M, Hodson EL, Houweling S, Josse B, Fraser PJ, Krummel PB, Lamarque J-F, Langenfelds RL, Le Quéré C, Naik V, O’Doherty S, Palmer PI, Pison I, Plummer D, Poulter B, Prinn RG, Rigby M, Ringeval B, Santini M, Schmidt M, Shindell DT, Simpson IJ, Spahni R, Steele LP, Strode SA, Sudo K, Szopa S, van der Werf GR, Voulgarakis A, van Weele M, Weiss RF, Williams JE, Zeng G (2013) Three decades of global methane sources and sinks. Nat Geosci 6:813. https://doi.org/10.1038/ngeo1955

    Article  CAS  Google Scholar 

  2. Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang Q (2013) Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Global Change Biol 19:1325–1346. https://doi.org/10.1111/gcb.12131

    Article  Google Scholar 

  3. Graef C, Hestnes AG, Svenning MM, Frenzel P (2011) The active methanotrophic community in a wetland from the High Arctic. Environ Microbiol Re 3:466–472. https://doi.org/10.1111/j.1758-2229.2010.00237.x

    Article  CAS  Google Scholar 

  4. Yun J, Zhuang G, Ma A, Guo H, Wang Y, Zhang H (2012) Community structure, abundance, and activity of methanotrophs in the Zoige Wetland of the Tibetan plateau. Microb Ecol 63:835–843. https://doi.org/10.1007/s00248-011-9981-x

    Article  CAS  PubMed  Google Scholar 

  5. Gupta V, Smemo KA, Yavitt JB, Basiliko N (2012) Active methanotrophs in two contrasting north American peatland ecosystems revealed using DNA-SIP. Microb Ecol 63:438–445. https://doi.org/10.1007/s00248-011-9902-z

    Article  CAS  PubMed  Google Scholar 

  6. Bodelier PLE (2011) Interactions between nitrogenous fertilizers and methane cycling in wetland and upland soils. Curr Opin Env Sust 3:379–388. https://doi.org/10.1016/j.cosust.2011.06.002

    Article  Google Scholar 

  7. Mo Y, Qi XE, Li A, Zhang X, Jia Z (2020) Active methanotrophs in suboxic alpine swamp soils of the Qinghai-Tibetan plateau. Front Microbiol 11:580866. https://doi.org/10.3389/fmicb.2020.580866

    Article  PubMed  PubMed Central  Google Scholar 

  8. Segarra KEA, Schubotz F, Samarkin V, Yoshinaga MY, Hinrichs KU, Joye SB (2015) High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions. Nat Commun 6:7477. https://doi.org/10.1038/ncomms8477

    Article  CAS  PubMed  Google Scholar 

  9. Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334. https://doi.org/10.1146/annurev.micro.61.080706.093130

    Article  CAS  PubMed  Google Scholar 

  10. Strous M, Jetten MSM (2004) Anaerobic oxidation of methane and ammonium. Annu Rev Microbiol 58:99–117. https://doi.org/10.1146/annurev.micro.58.030603.123605

    Article  CAS  PubMed  Google Scholar 

  11. Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson GW (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500:567–570. https://doi.org/10.1038/nature12375

    Article  CAS  PubMed  Google Scholar 

  12. Wang J, Cai C, Li Y, Hua M, Wang J, Yang H, Zheng P, Hu B (2019) Denitrifying anaerobic methane oxidation: a previously overlooked methane sink in intertidal zone. Envion Sci Technol 53:203–212. https://doi.org/10.1021/acs.est.8b05742

    Article  CAS  Google Scholar 

  13. Welte CU, Rasigraf O, Vaksmaa A, Versantvoort W, Arshad A, Op den Camp HJ, Jetten MS, Luke C, Reimann J (2016) Nitrate- and nitrite-dependent anaerobic oxidation of methane. Environ Microbiol Rep 8:941–955. https://doi.org/10.1111/1758-2229.12487

    Article  CAS  PubMed  Google Scholar 

  14. Zhou N, Zhao S, Shen X (2014) Nitrogen cycle in the hyporheic zone of natural wetlands. Chinese Sci Bull 59:2945–2956. https://doi.org/10.1007/s11434-014-0224-7

    Article  CAS  Google Scholar 

  15. Jordan TE, Whigham DF, Hofmockel KH, Pittek MA (2003) Nutrient and sediment removal by a restored wetland receiving agricultural runoff. J Environ Qual 32:1534–1547. https://doi.org/10.2134/jeq2003.1534

    Article  CAS  PubMed  Google Scholar 

  16. Lu G, Xie B, Cagle GA, Wang X, Han G, Wang X, Hou A, Guan B (2021) Effects of simulated nitrogen deposition on soil microbial community diversity in coastal wetland of the Yellow River Delta. Sci Total Environ 757:143825. https://doi.org/10.1016/j.scitotenv.2020.143825

    Article  CAS  PubMed  Google Scholar 

  17. Arshad A, Speth DR, de Graaf RM, Op den Camp HJ, Jetten MS, Welte CU (2015) A metagenomics-based metabolic model of nitrate-dependent anaerobic oxidation of methane by Methanoperedens-like Archaea. Front Microbiol 6:1423. https://doi.org/10.3389/fmicb.2015.01423

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ettwig KF, Zhu B, Speth D, Keltjens JT, Jetten MSM, Kartal B (2016) Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc Natl Acad Sci U S A 113:12792–12796. https://doi.org/10.1073/pnas.1609534113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shen LD, Ouyang L, Zhu Y, Trimmer M (2019) Active pathways of anaerobic methane oxidation across contrasting riverbeds. ISME J 13:752–766. https://doi.org/10.1038/s41396-018-0302-y

    Article  CAS  PubMed  Google Scholar 

  20. Weber HS, Habicht KS, Thamdrup B (2017) Anaerobic methanotrophic archaea of the ANME-2d cluster are active in a low-sulfate, iron-rich freshwater sediment. Front Microbiol 8:619. https://doi.org/10.3389/fmicb.2017.00619

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li W, Cai C, Song Y, Ni G, Zhang X, Lu P (2021) The role of crystalline iron oxides in methane mitigation through anaerobic oxidation of methane. Envion Sci Technol 1:1153–1160. https://doi.org/10.1021/acsestwater.0c00199

    Article  CAS  Google Scholar 

  22. He Z, Zhang Q, Feng Y, Luo H, Pan X, Gadd GM (2018) Microbiological and environmental significance of metal-dependent anaerobic oxidation of methane. Sci Total Environ 610–611:759–768. https://doi.org/10.1016/j.scitotenv.2017.08.140

    Article  CAS  PubMed  Google Scholar 

  23. Leu AO, Cai C, McIlroy SJ, Southam G, Orphan VJ, Yuan Z, Hu S, Tyson GW (2020) Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae. ISME J 14:1030–1041. https://doi.org/10.1038/s41396-020-0590-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lu YZ, Fu L, Ding J, Ding ZW, Li N, Zeng RJ (2016) Cr(VI) reduction coupled with anaerobic oxidation of methane in a laboratory reactor. Water Res 102:445–452. https://doi.org/10.1016/j.watres.2016.06.065

    Article  CAS  PubMed  Google Scholar 

  25. Gambelli L, Guerrero-Cruz S, Mesman RJ, Cremers G, Jetten MSM, Op den Camp HJM, Kartal B, Lueke C, van Niftrik L (2018) Community composition and ultrastructure of a nitrate-dependent anaerobic methane-oxidizing enrichment culture. Appl Environ Microbiol 84:e02186-e2217. https://doi.org/10.1128/aem.02186-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nie WB, Ding J, Xie GJ, Tan X, Lu Y, Peng L, Liu BF, Xing DF, Yuan Z, Ren N (2021) Simultaneous nitrate and sulfate dependent anaerobic oxidation of methane linking carbon, nitrogen and sulfur cycles. Water Res 194:116928. https://doi.org/10.1016/j.watres.2021.116928

    Article  CAS  PubMed  Google Scholar 

  27. Ding J, Zeng RJ (2021) Fundamentals and potential environmental significance of denitrifying anaerobic methane oxidizing archaea. Sci Total Environ 757:143928. https://doi.org/10.1016/j.scitotenv.2020.143928

    Article  CAS  PubMed  Google Scholar 

  28. Shen LD, Wu HS, Liu X, Li J (2017) Cooccurrence and potential role of nitrite- and nitrate-dependent methanotrophs in freshwater marsh sediments. Water Res 123:162–172. https://doi.org/10.1016/j.watres.2017.06.075

    Article  CAS  PubMed  Google Scholar 

  29. Xie F, Ma A, Zhou H, Liang Y, Yin J, Ma K, Zhuang X, Zhuang G (2020) Niche differentiation of denitrifying anaerobic methane oxidizing bacteria and archaea leads to effective methane filtration in a Tibetan alpine wetland. Environ Int 140:105764. https://doi.org/10.1016/j.envint.2020.105764

    Article  CAS  PubMed  Google Scholar 

  30. Vaksmaa A, Jetten MSM, Ettwig KF, Lüke C (2017) McrA primers for the detection and quantification of the anaerobic archaeal methanotroph ‘Candidatus Methanoperedens nitroreducens’. Appl Microbiol Biotechnol 101:1631–1641. https://doi.org/10.1007/s00253-016-8065-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu S, Cai C, Guo J, Lu W, Yuan Z, Hu S (2018) Different clusters of Candidatus ‘Methanoperedens nitroreducens’-like archaea as revealed by high-throughput sequencing with new primers. Sci Rep 8:7695. https://doi.org/10.1038/s41598-018-24974-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang T, Liu W, Zhang Y, Zhou Q, Wu Z, He F (2020) A stable simultaneous anammox, denitrifying anaerobic methane oxidation and denitrification process in integrated vertical constructed wetlands for slightly polluted wastewater. Environ Pollut 262:114363. https://doi.org/10.1016/j.envpol.2020.114363

    Article  CAS  PubMed  Google Scholar 

  33. Xu S, Lu W, Mustafa MF, Liu Y, Wang H (2020) Presence of diverse nitrate-dependent anaerobic methane oxidizing archaea in sewage sludge. J Appl Microbiol 128:775–783. https://doi.org/10.1111/jam.14502

    Article  CAS  PubMed  Google Scholar 

  34. Shen LD, Yang WT, Yang YL, Liu X, Tian MH, Jin JH, Liu JQ, Ren BJ, Pan YY, Han MJ (2021) Spatial and temporal variations of the community structure and abundance of Candidatus Methanoperedens nitroreducens-like archaea in paddy soils. Eur J Soil Biol 106:103345. https://doi.org/10.1016/j.ejsobi.2021.103345

    Article  CAS  Google Scholar 

  35. Gaporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624. https://doi.org/10.1038/ismej.2012.8

    Article  CAS  Google Scholar 

  36. Shen LD, Wu HS, Gao ZQ, Cheng HX, Li J, Liu X, Ren QQ (2016) Distribution and activity of anaerobic ammonium-oxidising bacteria in natural freshwater wetland soils. Appl Microbiol Biotechnol 100:3291–3300. https://doi.org/10.1007/s00253-015-7191-z

    Article  CAS  PubMed  Google Scholar 

  37. Berger S, Frank J, Dalcin Martins P, Jetten MSM, Welte CU (2017) High-Quality Draft Genome Sequence of “Candidatus Methanoperedens sp”. Strain BLZ2, a nitrate-reducing anaerobic methane-oxidizing archaeon enriched in an anoxic bioreactor. Genome Announc 5:e01159-e1117. https://doi.org/10.1128/genomeA.01159-17

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cai C, Leu AO, Xie GJ, Guo J, Feng Y, Zhao JX, Tyson GW, Yuan Z, Hu S (2018) A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction. ISME J 12:1929–1939. https://doi.org/10.1038/s41396-018-0109-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zheng Y, Hou L, Chen F, Zhou J, Liu M, Yin G, Gao J, Han P (2020) Denitrifying anaerobic methane oxidation in intertidal marsh soils: Occurrence and environmental significance. Geoderma 357:113943. https://doi.org/10.1016/j.geoderma.2019.113943

    Article  CAS  Google Scholar 

  41. Chen F, Zheng Y, Hou L, Zhou J, Yin G, Liu M (2020) Denitrifying anaerobic methane oxidation in marsh sediments of Chongming eastern intertidal flat. Mar Pollut Bull 150:110681. https://doi.org/10.1016/j.marpolbul.2019.110681

    Article  CAS  PubMed  Google Scholar 

  42. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shen LD, Tian MH, Cheng HX, Liu X, Yang YL, Liu JQ, Xu JB, Kong Y, Li JH, Liu Y (2020) Different responses of nitrite- and nitrate-dependent anaerobic methanotrophs to increasing nitrogen loading in a freshwater reservoir. Environ Pollut 263:114623. https://doi.org/10.1016/j.envpol.2020.114623

    Article  CAS  PubMed  Google Scholar 

  44. Chen F, Zheng Y, Hou L, Niu Y, Gao D, An Z, Zhou J, Yin G, Dong H, Han P, Liang X, Liu M (2021) Microbial abundance and activity of nitrite/nitrate-dependent anaerobic methane oxidizers in estuarine and intertidal wetlands: heterogeneity and driving factors. Water Res 190:116737. https://doi.org/10.1016/j.watres.2020.116737

    Article  CAS  PubMed  Google Scholar 

  45. Vaksmaa A, van Alen TA, Ettwig KF, Lupotto E, Valè G, Jetten MSM, Lüke C (2017) Stratification of diversity and activity of methanogenic and methanotrophic microorganisms in a nitrogen-fertilized Italian paddy soil. Front Microbiol 8:2127. https://doi.org/10.3389/fmicb.2017.02127

    Article  PubMed  PubMed Central  Google Scholar 

  46. Vaksmaa A, Luke C, van Alen T, Vale G, Lupotto E, Jetten MS, Ettwig KF (2016) Distribution and activity of the anaerobic methanotrophic community in a nitrogen fertilized Italian paddy soil. FEMS Microbiol Ecol 92:fiw181. https://doi.org/10.1093/femsec/fiw181

    Article  CAS  PubMed  Google Scholar 

  47. Cheng S, Qin C, Xie H, Wang W, Hu Z, Liang S, Feng K (2021) A new insight on the effects of iron oxides and dissimilated metal-reducing bacteria on CH4 emissions in constructed wetland matrix systems. Bioresource Technol 320:124296. https://doi.org/10.1016/j.biortech.2020.124296

    Article  CAS  Google Scholar 

  48. Guerrero-Cruz S, Cremers G, van Alen TA, Op den Camp HJM, Jetten MSM (2018) Response of the anaerobic methanotroph “Candidatus Methanoperedens nitroreducens” to oxygen stress. Appl Environ Microbiol 84:e01832-e1918. https://doi.org/10.1128/aem.01832-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shen L, Ouyang L, Zhu Y, Trimmer M (2019) Spatial separation of anaerobic ammonium oxidation and nitrite-dependent anaerobic methane oxidation in permeable riverbeds. Environ Microbiol 21:1185–1195. https://doi.org/10.1111/1462-2920.14554

    Article  CAS  PubMed  Google Scholar 

  50. Kotiaho M, Fritze H, Merilä P, Juottonen H, Leppälä M, Laine J, Laiho R, Yrjälä K, Tuittila E-S (2010) Methanogen activity in relation to water table level in two boreal fens. Biol Fert Soils 46:567–575. https://doi.org/10.1007/s00374-010-0461-0

    Article  CAS  Google Scholar 

  51. Xu H, Hosen Y (2010) Effects of soil water content and rice straw incorporation in the fallow season on CH4 emissions during fallow and the following rice-cropping seasons. Plant Soil 335:373–383. https://doi.org/10.1007/s11104-010-0426-y

    Article  CAS  Google Scholar 

  52. Biderre-Petit C, Jézéquel D, Dugat-Bony E, Lopes F, Kuever J, Borrel G, Viollier E, Fonty G, Peyret P (2011) Identification of microbial communities involved in the methane cycle of a freshwater meromictic lake. FEMS Microbiol Ecol 77:533–545. https://doi.org/10.1111/j.1574-6941.2011.01134.x

    Article  CAS  PubMed  Google Scholar 

  53. Ding B, Zhang H, Luo W, Sun S, Cheng F, Li Z (2021) Nitrogen loss through denitrification, anammox and Feammox in a paddy soil. Sci Total Environ 773:14560. https://doi.org/10.1016/j.scitotenv.2021.145601

    Article  CAS  Google Scholar 

  54. Wang N, Li L, Dannenmann M, Luo Y, Xu XH, Zhang BW, Chen SP, Dong KH, Huang JH, Xu XF, Wang C (2021) Seasonality of gross ammonification and nitrification altered by precipitation in a semi-arid grassland of Northern China. Soil Biol Biochem 154:108146. https://doi.org/10.1016/j.soilbio.2021.108146

    Article  CAS  Google Scholar 

  55. Hu JJ, Liu S, Yang WL, He ZF, Wang JQ, Liu H, Zheng P, Xi CW, Ma F, Hu BL (2019) Ecological success of the Nitrosopumilus and Nitrosospira clusters in the intertidal zone. Microb Ecol 78:555–564. https://doi.org/10.1007/s00248-019-01359-x

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 41977037), and the Natural Science Foundation of Jiangsu Province (No. BK20190092).

Author information

Authors and Affiliations

Authors

Contributions

This study was designed by L. S. The experiments were conducted by L. S., C. G., B. R., J. J., H. H., X. L., W. Y., Y. Y., J. L., and M. T., and the manuscript was prepared by L. S., C. G., and B. R.

Corresponding author

Correspondence to Li-dong Shen.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 43 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Ld., Geng, Cy., Ren, Bj. et al. Detection and Quantification of Candidatus Methanoperedens-Like Archaea in Freshwater Wetland Soils. Microb Ecol 85, 441–453 (2023). https://doi.org/10.1007/s00248-022-01968-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-01968-z

Keywords

Navigation