Skip to main content

Advertisement

Log in

Environmental Drivers of Microbial Functioning in Mediterranean Forest Soils

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Mediterranean forests own distinct characteristics resulting from climate, soil, and vegetation that affect soil microbial communities’ assembly and their associated functions. We initiated a multi-scalar analysis of environmental drivers of soil functioning to (1) identify pertinent factorial scales and (2) determine the relative importance of soil, vegetation, and geoclimate influences in shaping soil microbial functions across the French Mediterranean forests. Soil samples (0–15 cm) were collected from 60 forest sites and soil physicochemical and microbiological properties were assessed across different factorial scales i.e., bioclimates, slope exposures, and forest stands. Patterns in microbial catabolic potential (i.e., extracellular enzymes and microbial respiration) and carbon (C) source utilization (i.e., catabolic-level physiological profiling) were partitioned between vegetation cover, soil characteristics, and geoclimate components. Our results reveal that the catabolic potential of soil microbes was strongly influenced by the forest stands and mainly relied on ammonium and nitrate contents. In contrast, variation in C source utilization was mainly explained by vegetation cover. Soil metabolic capacities of microorganisms and resulting C dynamics were largely constrained by climate parameters, which suggests potentially important consequences for soil C storage. Our study revealed diverse structuration patterns between the catabolic potential and the carbon source utilization of soil microbial communities, and gives insights into the underlying mechanisms of soil microbial functioning in Mediterranean forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bradford MA, Wieder WR, Bonan GB, Fierer N, Raymond PA, Crowther TW (2016) Managing uncertainty in soil carbon feedbacks to climate change. Nat Clim Chang 6:751–758

    Article  Google Scholar 

  2. Lal R (2005) Forest soils and carbon sequestration. For Soils Res Theory Real Its Role Technol Sel Ed Pap 10th North Am For Soils Conf Held Saulte Ste Marie Ont Can 20-24 July 2003 220:242–258. https://doi.org/10.1016/j.foreco.2005.08.015

  3. Tian H, Lu C, Yang J, Banger K, Huntzinger DN, Schwalm CR, Michalak AM, Cook R, Ciais P, Hayes D, Huang M, Ito A, Jain AK, Lei H, Mao J, Pan S, Post WM, Peng S, Poulter B, Ren W, Ricciuto D, Schaefer K, Shi X, Tao B, Wang W, Wei Y, Yang Q, Zhang B, Zeng N (2015) Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: current status and future directions. Glob Biogeochem Cycles 29:775–792. https://doi.org/10.1002/2014GB005021

    Article  CAS  Google Scholar 

  4. Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993. https://doi.org/10.1126/science.1201609

    Article  CAS  PubMed  Google Scholar 

  5. Romaní AM, Fischer H, Mille-Lindblom C, Tranvik LJ (2006) Interactions of bacteria and fungi on decomposing litter: differential extracellular enzyme activities. Ecology 87:2559–2569

    Article  Google Scholar 

  6. Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2:805–814

    Article  CAS  Google Scholar 

  7. Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  CAS  Google Scholar 

  8. Rousk J, Baaath E, Brookes PC et al (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351

    Article  Google Scholar 

  9. Rousk J, Brookes PC, Baath E (2009) Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbiol 75:1589–1596. https://doi.org/10.1128/AEM.02775-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R (2012) Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J 6:1007–1017. https://doi.org/10.1038/ismej.2011.159

    Article  CAS  PubMed  Google Scholar 

  11. Bonanomi G, Capodilupo M, Incerti G, Mazzoleni S (2014) Nitrogen transfer in litter mixture enhances decomposition rate, temperature sensitivity, and C quality changes. Plant Soil 381:307–321. https://doi.org/10.1007/s11104-014-2119-4

    Article  CAS  Google Scholar 

  12. Plassart P, Prévost-Bouré NC, Uroz S, Dequiedt S, Stone D, Creamer R, Griffiths RI, Bailey MJ, Ranjard L, Lemanceau P (2019) Soil parameters, land use, and geographical distance drive soil bacterial communities along a European transect. Sci Rep 9:1–17. https://doi.org/10.1038/s41598-018-36867-2

    Article  CAS  Google Scholar 

  13. Castaño C, Lindahl BD, Alday JG, Hagenbo A, Martínez de Aragón J, Parladé J, Pera J, Bonet JA (2018) Soil microclimate changes affect soil fungal communities in a Mediterranean pine forest. New Phytol 220:1211–1221. https://doi.org/10.1111/nph.15205

    Article  PubMed  Google Scholar 

  14. Brunel C, Gros R, Lerch TZ, Da Silva AMF (2020) Changes in soil organic matter and microbial communities after fine and coarse residues inputs from Mediterranean tree species. Appl Soil Ecol 149:103516

    Article  Google Scholar 

  15. Boukhdoud N, Silva AMFD, Darwish T, Gros R (2017) Olive mill waste and glyphosate-based herbicide addition to olive grove soils: effects on microbial activities and their responses to drying–rewetting cycles. Soil Use Manag 33:499–510. https://doi.org/10.1111/sum.12367

    Article  Google Scholar 

  16. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. https://doi.org/10.1002/joc.1276

    Article  Google Scholar 

  17. Medail F, Quezel P (2003) Que faut-il entendre par “forêts méditerranéennes”? XXIV:

  18. Chaney RC, Slonim SM, Slonim SS (1982) Determination of calcium carbonate content in soils. In: Geotechnical properties, behavior, and performance of calcareous soils. ASTM International, 3-15, https://doi.org/10.1520/STP28907S

  19. Aubert G (1978) Méthodes d’analyses des sols. Centre national de documentation pédagogique, Centre régional de documentation pédagogique de Marseille

  20. Massiot D, Fayon F, Capron M, King I, le Calvé S, Alonso B, Durand JO, Bujoli B, Gan Z, Hoatson G (2002) Modelling one-and two-dimensional solid-state NMR spectra. Magn Reson Chem 40:70–76

    Article  CAS  Google Scholar 

  21. Baldock J, Preston CM (1995) Chemistry of carbon decomposition processes in forests as revealed by solid-state 13C NMR. 89–117, https://doi.org/10.2136/1995.carbonforms.c6

  22. Beare MH, Neely CL, Coleman DC, Hargrove WL (1990) A substrate-induced respiration (SIR) method for measurement of fungal and bacterial biomass on plant residues. Soil Biol Biochem 22:585–594. https://doi.org/10.1016/0038-0717(90)90002-H

    Article  Google Scholar 

  23. Anderson T-H (2003) Microbial eco-physiological indicators to asses soil quality. Agric Ecosyst Environ 98:285–293. https://doi.org/10.1016/S0167-8809(03)00088-4

    Article  Google Scholar 

  24. Saiya-Cork K, Sinsabaugh R, Zak D (2002) The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol Biochem 34:1309–1315

    Article  CAS  Google Scholar 

  25. Goujard L, Villeneuve P, Barea B, Lecomte J, Pina M, Claude S, le Petit J, Ferré E (2009) A spectrophotometric transesterification-based assay for lipases in organic solvent. Anal Biochem 385:161–167

    Article  CAS  Google Scholar 

  26. Ladd J, Butler J (1972) Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biol Biochem 4:19–30

    Article  CAS  Google Scholar 

  27. Farnet Da Silva AM, Qasemian L, Guiral D, Ferré E (2010) A modified method based on arsenomolybdate complex to quantify cellulase activities: application to litters. Pedobiologia 53:159–160. https://doi.org/10.1016/j.pedobi.2009.09.001

    Article  Google Scholar 

  28. Mulvaney DL, America SSS of, Agronomy AS of (1996) Methods of soil analysis part 3: chemical methods. Amer Society of Agronomy, Madison

    Google Scholar 

  29. Braun-Blanquet J (1932) Plant sociology. The study of plant communities. First ed. Plant Sociol Study Plant Communities First Ed

  30. Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14:927–930. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x

    Article  Google Scholar 

  31. Peterson RA (2018) bestNormalize: normalizing transformation functions, R package version 1.2. 0

  32. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  33. Borcard D, Gillet F, Legendre P (2018) Unconstrained Ordination. In: Borcard D, Gillet F, Legendre P (eds) Numerical ecology with R. Springer International Publishing, Cham, pp 151–201

    Chapter  Google Scholar 

  34. James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning. Springer, Berlin

    Book  Google Scholar 

  35. Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14

    Article  Google Scholar 

  36. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300

    Google Scholar 

  37. Lladó S, Baldrian P (2017) Community-level physiological profiling analyses show potential to identify the copiotrophic bacteria present in soil environments. PLoS One 12:e0171638. https://doi.org/10.1371/journal.pone.0171638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Waring BG, Averill C, Hawkes CV (2013) Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: insights from meta-analysis and theoretical models. Ecol Lett 16:887–894. https://doi.org/10.1111/ele.12125

    Article  PubMed  Google Scholar 

  39. Six J, Frey SD, Thiet RK, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70:555–569. https://doi.org/10.2136/sssaj2004.0347

    Article  CAS  Google Scholar 

  40. McGuire KL, Treseder KK (2010) Microbial communities and their relevance for ecosystem models: decomposition as a case study. Soil Biol Biochem 42:529–535. https://doi.org/10.1016/j.soilbio.2009.11.016

    Article  CAS  Google Scholar 

  41. Bardgett RD, Shine A (1999) Linkages between plant litter diversity, soil microbial biomass and ecosystem function in temperate grasslands. Soil Biol Biochem 31:317–321

    Article  CAS  Google Scholar 

  42. Eisenhauer N, Beßler H, Engels C, Gleixner G, Habekost M, Milcu A, Partsch S, Sabais ACW, Scherber C, Steinbeiss S, Weigelt A, Weisser WW, Scheu S (2010) Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology 91:485–496. https://doi.org/10.1890/08-2338.1

    Article  CAS  PubMed  Google Scholar 

  43. Scheibe A, Steffens C, Seven J, Jacob A, Hertel D, Leuschner C, Gleixner G (2015) Effects of tree identity dominate over tree diversity on the soil microbial community structure. Soil Biol Biochem 81:219–227. https://doi.org/10.1016/j.soilbio.2014.11.020

    Article  CAS  Google Scholar 

  44. Thoms C, Gattinger A, Jacob M, Thomas FM, Gleixner G (2010) Direct and indirect effects of tree diversity drive soil microbial diversity in temperate deciduous forest. Soil Biol Biochem 42:1558–1565. https://doi.org/10.1016/j.soilbio.2010.05.030

    Article  CAS  Google Scholar 

  45. Khlifa R, Paquette A, Messier C, Reich PB, Munson AD (2017) Do temperate tree species diversity and identity influence soil microbial community function and composition? Ecol Evol 7:7965–7974. https://doi.org/10.1002/ece3.3313

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chavez-Vergara B, Merino A, Vázquez-Marrufo G, García-Oliva F (2014) Organic matter dynamics and microbial activity during decomposition of forest floor under two native neotropical oak species in a temperate deciduous forest in Mexico. Geoderma 235–236:133–145. https://doi.org/10.1016/j.geoderma.2014.07.005

    Article  CAS  Google Scholar 

  47. Pérez-Izquierdo L, Saint-André L, Santenoise P, Buée M, Rincón A (2018) Tree genotype and seasonal effects on soil properties and biogeochemical functioning in Mediterranean pine forests. Eur J Soil Sci 69:1087–1097. https://doi.org/10.1111/ejss.12712

    Article  CAS  Google Scholar 

  48. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  Google Scholar 

  49. Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120

    Article  CAS  Google Scholar 

  50. Rutgers M, Wouterse M, Drost SM, Breure AM, Mulder C, Stone D, Creamer RE, Winding A, Bloem J (2016) Monitoring soil bacteria with community-level physiological profiles using BiologTM ECO-plates in the Netherlands and Europe. Appl Soil Ecol 97:23–35. https://doi.org/10.1016/j.apsoil.2015.06.007

    Article  Google Scholar 

  51. Zechmeister-Boltenstern S, Keiblinger KM, Mooshammer M, Peñuelas J, Richter A, Sardans J, Wanek W (2015) The application of ecological stoichiometry to plant-microbial-soil organic matter transformations. Ecol Monogr 85:133–155. https://doi.org/10.1890/14-0777.1

    Article  Google Scholar 

  52. Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B (2007) Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315:361–364. https://doi.org/10.1126/science.1134853

    Article  CAS  PubMed  Google Scholar 

  53. Brunel C, Gros R, Ziarelli F, Da Silva AMF (2017) Additive or non-additive effect of mixing oak in pine stands on soil properties depends on the tree species in Mediterranean forests. Sci Total Environ 590:676–685

    Article  Google Scholar 

  54. Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371. https://doi.org/10.1046/j.1466-822X.2003.00042.x

    Article  Google Scholar 

  55. Pons A, Quézel P (1998) À propos de la mise en place du climat méditerranéen. C R Acad Sci Ser IIA Earth Planet Sci 327:755–760. https://doi.org/10.1016/S1251-8050(99)80047-0

    Article  Google Scholar 

  56. Sardans J, Peñuelas J (2013) Plant-soil interactions in Mediterranean forest and shrublands: impacts of climatic change. Plant Soil 365:1–33. https://doi.org/10.1007/s11104-013-1591-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bhunia RK, Showman LJ, Jose A, Nikolau BJ (2018) Combined use of cutinase and high-resolution mass-spectrometry to query the molecular architecture of cutin. Plant Methods 14:117. https://doi.org/10.1186/s13007-018-0384-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lal R (2018) Digging deeper: a holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Glob Chang Biol 24:3285–3301. https://doi.org/10.1111/gcb.14054

    Article  PubMed  Google Scholar 

  59. Rowley MC, Grand S, Verrecchia ÉP (2018) Calcium-mediated stabilisation of soil organic carbon. Biogeochemistry 137:27–49. https://doi.org/10.1007/s10533-017-0410-1

    Article  CAS  Google Scholar 

  60. Yuste JC, Fernandez-Gonzalez AJ, Fernandez-Lopez M et al (2014) Strong functional stability of soil microbial communities under semiarid Mediterranean conditions and subjected to long-term shifts in baseline precipitation. Soil Biol Biochem 69:223–233

    Article  Google Scholar 

  61. Paul EA (2014) Soil microbiology, ecology and biochemistry. Academic press, Cambridge

    Google Scholar 

  62. Tardy V, Mathieu O, Lévêque J, Terrat S, Chabbi A, Lemanceau P, Ranjard L, Maron PA (2014) Stability of soil microbial structure and activity depends on microbial diversity. Environ Microbiol Rep 6:173–183

    Article  CAS  Google Scholar 

  63. Chomel M, Guittonny-Larchevêque M, Fernandez C, Gallet C, DesRochers A, Paré D, Jackson BG, Baldy V (2016) Plant secondary metabolites: a key driver of litter decomposition and soil nutrient cycling. J Ecol 104:1527–1541

    Article  Google Scholar 

  64. Mutabaruka R, Hairiah K, Cadisch G (2007) Microbial degradation of hydrolysable and condensed tannin polyphenol–protein complexes in soils from different land-use histories. Soil Biol Biochem 39:1479–1492

    Article  CAS  Google Scholar 

  65. Rovira P, Vallejo VR (2002) Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: an acid hydrolysis approach. Geoderma 107:109–141. https://doi.org/10.1016/S0016-7061(01)00143-4

    Article  CAS  Google Scholar 

  66. Pook EW et al (1966) The influence of aspect on the composition and structure of dry sclerophyll forest on Black Mountain, Canberra. ACT. Aust J Bot 14:223–242

    Article  Google Scholar 

  67. Cantlon JE (1953) Vegetation and microclimates on north and south slopes of Cushetunk Mountain, New Jersey. Ecol Monogr 23:241–270

    Article  Google Scholar 

  68. Martínez-Murillo JF, Gabarrón-Galeote MA, Ruiz-Sinoga JD (2013) Soil water repellency in Mediterranean rangelands under contrasted climatic, slope and patch conditions in southern Spain. Catena 110:196–206

    Article  Google Scholar 

  69. Nadal-Romero E, Petrlic K, Verachtert E, Bochet E, Poesen J (2014) Effects of slope angle and aspect on plant cover and species richness in a humid Mediterranean badland. Earth Surf Process Landf 39:1705–1716

    Article  Google Scholar 

  70. Maaaren IE, Karki S, Prajapati C et al (2015) Facing north or south: does slope aspect impact forest stand characteristics and soil properties in a semiarid trans-Himalayan valley? J Arid Environ 121:112–123

    Article  Google Scholar 

  71. Allard V, Ourcival JM, Rambal S et al (2008) Seasonal and annual variation of carbon exchange in an evergreen Mediterranean forest in southern France. Glob Chang Biol 14:714–725. https://doi.org/10.1111/j.1365-2486.2008.01539.x

    Article  Google Scholar 

  72. Muñoz-Rojas M, Jordán A, Zavala LM, de la Rosa D, Abd-Elmabod SK, Anaya-Romero M (2015) Impact of land use and land cover changes on organic carbon stocks in Mediterranean soils (1956–2007). Land Degrad Dev 26:168–179. https://doi.org/10.1002/ldr.2194

    Article  Google Scholar 

  73. Insam H, Haselwandter K (1989) Metabolic quotient of the soil microflora in relation to plant succession. Oecologia 79:174–178. https://doi.org/10.1007/BF00388474

    Article  CAS  PubMed  Google Scholar 

  74. Vicente Serrano SM, López-Moreno JI, Beguería S et al (2014) Evidence of increasing drought severity caused by temperature rise in southern Europe. Environ Res Lett 9. https://doi.org/10.1088/1748-9326/9/4/044001

  75. Diamond S, Andeer PF, Li Z, Crits-Christoph A, Burstein D, Anantharaman K, Lane KR, Thomas BC, Pan C, Northen TR, Banfield JF (2019) Mediterranean grassland soil C–N compound turnover is dependent on rainfall and depth, and is mediated by genomically divergent microorganisms. Nat Microbiol 4:1356–1367. https://doi.org/10.1038/s41564-019-0449-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Florence Ruaudel, Fabio Ziarelli, and Sebastien Milanesio for their technical assistance and are grateful to the Forest Property Regional Center (CRPF) for their contribution, especially to Olivier Martineau for his valuable support in determining the selected sites.

Funding

The project received funding from the French Environment and Energy Management Agency (ADEME) and Region Provence Alpes Côte d’Azur (France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Brunel.

Electronic supplementary material

ESM 1

(DOC 134 kb)

ESM 2

(DOC 13876 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brunel, C., Da Silva, AM.F. & Gros, R. Environmental Drivers of Microbial Functioning in Mediterranean Forest Soils. Microb Ecol 80, 669–681 (2020). https://doi.org/10.1007/s00248-020-01518-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01518-5

Keywords

Navigation