Skip to main content

Advertisement

Log in

Fouling Microbial Communities on Plastics Compared with Wood and Steel: Are They Substrate- or Location-Specific?

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Although marine biofouling has been widely studied on different substrates, information on biofouling on plastics in the Arabian Gulf is limited. Substrate- and location-specific effects were investigated by comparing the microbial communities developed on polyethylene terephthalate (PET) and polyethylene (PE) with those on steel and wood, at two locations in the Sea of Oman. Total biomass was lower on PET and PE than on steel and wood. PET had the highest bacterial abundance at both locations, whereas chlorophyll a concentrations did not vary between substrates. MiSeq 16S ribosomal RNA sequencing revealed comparable operational taxonomic unit (OTU) richness on all substrates at one location but lower numbers on PET and PE at the other location. Non-metric multidimensional scaling (NMDS) showed distinct clusters of the bacterial communities based on substrate (analysis of similarity (ANOSIM), R = 0.45–0.97, p < 0.03) and location (ANOSIM, R = 0.56, p < 0.0001). The bacterial genera Microcystis and Hydrogenophaga and the diatoms Licmophora and Mastogloia were specifically detected on plastics. Desulfovibrio and Pseudomonas spp. exhibited their highest abundance on steel and Corynebacterium spp. on wood. Scanning electron microscopy (SEM) revealed fissure formation on PET and PE, indicating physical degradation. The presence of free radicals on PET and carbonyl bonds (C=O) on PE, as revealed by Fourier transform infrared (FTIR) spectroscopy, indicated abiotic degradation while hydroxyl groups and spectral peaks for proteins and polysaccharides on PE indicated biotic degradation. We conclude that fouling microbial communities are not only substrate-specific but also location-specific and microbes developing on plastics could potentially contribute to their degradation in the marine environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. De Tender C, Schlundt C, Devriese LI, Mincer TJ, Zettler ER, Amaral-Zettler LA (2017) A review of microscopy and comparative molecular-based methods to characterize “plastisphere” communities. Anal Methods 9:2132–2143. https://doi.org/10.1039/C7AY00260B

    Article  CAS  Google Scholar 

  2. Eriksen M, Lebreton LC, Carson HS, Thiel M, Moore CJ, Borerro JC, Galgani F, Ryan PG, Reisser J (2014) Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS One 9:e111913. https://doi.org/10.1371/journal.pone.0111913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Galgani F, Hanke G, Maes T (2015) Global distribution, composition and abundance of marine litter. Marine anthropogenic litter. Springer, Cham, pp 29–56

    Chapter  Google Scholar 

  4. Castillo AB, Al-Maslamani I, Obbard JP (2016) Prevalence of microplastics in the marine waters of Qatar. Mar Pollut Bull 111:260–267. https://doi.org/10.1016/j.emarpolbul.2016.06.108

    Article  CAS  PubMed  Google Scholar 

  5. Khordagui HK, Abu-Hilal AH (1994a) Industrial plastic on the southern beaches of the Arabian Gulf and the western beaches of the Gulf of Oman. Environ Pollut 84:325–327. https://doi.org/10.1016/0269-7491(94)90143-0

    Article  CAS  PubMed  Google Scholar 

  6. Khordagui HK, Abu-Hilal AH (1994b) Man-made litter on the shores of the United Arab Emirates on the Arabian Gulf and the Gulf of Oman. Water Air Soil Pollut 76:343–352. https://doi.org/10.1007/BF00482711

    Article  Google Scholar 

  7. Claereboudt MR (2004) Shore litter along sandy beaches of the Gulf of Oman. Marine Poll Bull 49:770–777. https://doi.org/10.1016/j.marpolbul.2004.06.004

    Article  CAS  Google Scholar 

  8. Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62:1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030

    Article  CAS  PubMed  Google Scholar 

  9. Lobelle D, Cunliffe M (2011) Early microbial biofilm formation on marine plastic debris. Marine Poll Bull 62:197–200. https://doi.org/10.1016/j.marpolbul.2010.10.013

    Article  CAS  Google Scholar 

  10. Reisser J, Shaw J, Wilcox C, Hardesty BD, Proietti M, Thums M, Pattiaratchi C (2013) Marine plastic pollution in waters around Australia: characteristics, concentrations, and pathways. PLoS One 8:e80466. https://doi.org/10.1371/journal.pone.0080466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zettler ER, Mincer TJ, Amaral-Zettler LA (2013) Life in the “plastisphere”: microbial communities on plastic marine debris. Environ Sci Technol 47(13):7137–7146. https://doi.org/10.1021/es401288x

    Article  CAS  PubMed  Google Scholar 

  12. Pierce KE, Harris RJ, Larned LS, Pokras MA (2004) Obstruction and starvation associated with plastic ingestion in a northern gannet Morus bassanus and a greater shearwater Puffinus gravis. Mar Ornithol 32:187–189

    Google Scholar 

  13. Browne MA, Dissanayake A, Galloway TS, Lowe DM, Thompson RC (2008) Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L). Environ Sci Technol 42:5026–5031. https://doi.org/10.1021/es800249a

    Article  CAS  PubMed  Google Scholar 

  14. Gregory MR (2009) Environmental implications of plastic debris in marine settings—entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos Trans R Soc Lond B Biol Sci 364:2013–2025. https://doi.org/10.1098/rstb.2008.0265

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lusher AL, McHugh M, Thompson RC (2013) Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Mar Pollut Bull 67:94–99. https://doi.org/10.1016/j.marpolbul.2012.11.028

    Article  CAS  PubMed  Google Scholar 

  16. Lusher AL, Hernandez-Milian G, O’Brien J, Berrow S, O’Connor I, Officer R (2015a) Microplastic and macroplastic ingestion by a deep diving, oceanic cetacean: the True’s beaked whale Mesoplodon mirus. Environ Pollut 199:185–191. https://doi.org/10.1016/j.envpol.2015.01.023

    Article  CAS  PubMed  Google Scholar 

  17. Lusher AL, Tirelli V, O’Connor I, Officer R (2015b) Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples. Sci Rep 5:14947. https://doi.org/10.1038/srep14947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Masó M, Fortuño JM, de Juan S, Demestre M (2016) Microfouling communities from pelagic and benthic marine plastic debris sampled across Mediterranean coastal waters. Sci Mar 80:117–127. https://doi.org/10.3989/scimar.04281.10A

    Article  Google Scholar 

  19. Oberbeckmann S, Loeder MG, Gerdts G, Osborn AM (2014) Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters. FEMS Microbiol Ecol 90:478–492. https://doi.org/10.1111/1574-6941.12409

    Article  CAS  PubMed  Google Scholar 

  20. Oberbeckmann S, Osborn AM, Duhaime MB (2016) Microbes on a bottle: substrate, season and geography influence community composition of microbes colonizing marine plastic debris. PLoS One 11:e0159289. https://doi.org/10.1371/journal.pone.0159289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Oberbeckmann S, Kreikemeyer B, Labrenz M (2018) Environmental factors support the formation of specific bacterial assemblages on microplastics. Front Microbiol 8:2709. https://doi.org/10.3389/fmicb.2017.02709

    Article  PubMed  PubMed Central  Google Scholar 

  22. Eich A, Mildenberger T, Laforsch C, Weber M (2015) Biofilm and diatom succession on polyethylene (PE) and biodegradable plastic bags in two marine habitats: early signs of degradation in the pelagic and benthic zone? PLoS One 10:e0137201. https://doi.org/10.1371/journal.pone.0137201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jones PR, Cottrell MT, Kirchman DL, Dexter SC (2007) Bacterial community structure of biofilms on artificial surfaces in an estuary. Microb Ecol 53:153–162. https://doi.org/10.1007/s00248-006-9154-5

    Article  PubMed  Google Scholar 

  24. Lee JW, Nam JH, Kim YH, Lee KH, Lee DH (2008) Bacterial communities in the initial stage of marine biofilm formation on artificial surfaces. J Microbiol 46:174–182. https://doi.org/10.1007/s12275-008-0032-3

    Article  CAS  PubMed  Google Scholar 

  25. Mitbavkar S, Anil AC (2008) Seasonal variations in the fouling diatom community structure from a monsoon influenced tropical estuary. Biofouling 24:415–426. https://doi.org/10.1080/08927010802340317

    Article  PubMed  Google Scholar 

  26. Chung HC, Lee OO, Huang YL, Mok SY, Kolter R, Qian PY (2010) Bacterial community succession and chemical profiles of subtidal biofilms in relation to larval settlement of the polychaete Hydroides elegans. ISME J 4:817–828. https://doi.org/10.1038/ismej.2009.157

    Article  CAS  PubMed  Google Scholar 

  27. Andrady AL, Hamid SH, Hu X, Torikai A (1998) Effects of increased solar ultraviolet radiation on materials. J Photochem Photobiol B 46:96–103. https://doi.org/10.1016/S1011-1344(98)00188-2

    Article  CAS  PubMed  Google Scholar 

  28. Pritchard G (1998) Quick reference guide. Plastics additives. Springer, Dordrecht, pp 11–15

    Chapter  Google Scholar 

  29. Andrady AL (2003) Plastics and the environment. Wiley, Hoboken

    Book  Google Scholar 

  30. Zimring CA (2012) Encyclopedia of consumption and waste: the social science of garbage. Sage Publications Inc, Thousand Oaks

    Book  Google Scholar 

  31. ter Halle A, Ladirat L, Martignac M, Mingotaud AF, Boyron O, Perez E (2017) To what extent are microplastics from the open ocean weathered? Environ Pollut 227:167–174. https://doi.org/10.1016/j.envpol.2017.04.051

    Article  CAS  PubMed  Google Scholar 

  32. Sudhakar M, Trishul A, Doble M, Kumar KS, Jahan SS, Inbakandan D, Viduthalai RR, Umadevi VR, Murthy PS, Venkatesan R (2007) Biofouling and biodegradation of polyolefins in ocean waters. Polym Degrad Stab 92:1743–1752. https://doi.org/10.1016/j.polymdegradstab.2007.03.029

    Article  CAS  Google Scholar 

  33. O’Brine T, Thompson RC (2010) Degradation of plastic carrier bags in the marine environment. Mar Pollut Bull 60:2279–2283. https://doi.org/10.1016/j.marpolbul.2010.08.005

    Article  CAS  PubMed  Google Scholar 

  34. Dussud C, Hudec C, George M, Fabre P, Higgs P, Bruzaud S, Delort AM, Eyheraguibel B, Meistertzheim AL, Jacquin J, Cheng J, Callac N, Odobel C, Rabouille S, Ghiglione JF (2018) Colonization of nonbiodegradable and biodegradable plastics by marine microorganisms. Front Microbiol 9:1571

  35. Harshvardhan K, Jha B (2013) Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India. Marine Poll Bull 77:100–106

  36. Dobretsov S, Thomason JC (2011) The development of marine biofilms on two commercial non-biocidal coatings: a comparison between silicone and fluoropolymer technologies. Biofouling 27:869–880. https://doi.org/10.1080/08927014.2011.607233

    Article  CAS  PubMed  Google Scholar 

  37. Lorenzen CJ (1967) Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnol Oceanogr 12:343–346. https://doi.org/10.4319/lo.1967.12.2.0343

    Article  CAS  Google Scholar 

  38. Round FE, Crawford RM (1981) The lines of evolution of the Bacillariophyta. I. Origin. Proc R Soc Lond B 211:237–260. https://doi.org/10.1098/rspb.1981.0004

    Article  Google Scholar 

  39. Lueders T, Manefield M, Friedrich MW (2004) Enhanced sensitivity of DNA-and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients. Environ Microbiol 6:73–78. https://doi.org/10.1046/j.1462-2920.2003.00536.x

    Article  CAS  PubMed  Google Scholar 

  40. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41:e1. https://doi.org/10.1093/nar/gks808

    Article  CAS  PubMed  Google Scholar 

  41. Ramette A, Tiedje JM (2007) Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy ecosystem. Proc Natl Acad Sci U S A 104:2761–2766. https://doi.org/10.1073/pnas.0610671104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Austral Ecol 18:117–143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x

    Article  Google Scholar 

  43. Abed RMM, Al Kindi S, Schramm A, Barry MJ (2011) Short-term effects of flooding on bacterial community structure and nitrogenase activity in microbial mats from a desert stream. Aquat Microb Ecol 63:245–254

  44. Ramette A (2009) Quantitative community fingerprinting methods for estimating the abundance of operational taxonomic units in natural microbial communities. Appl Environ Microbiol 75:2495–2505. https://doi.org/10.1128/AEM.02409-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hammer Ø, Harper DAT, Ryan PD (2001) Paleontological statistics software: package for education and data analysis. Palaeontol Electron 4:1–9

  46. Zobell CE (1943) The effect of solid surfaces upon bacterial activity. J Bacteriol 46:39

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Marszalek DS, Gerchakov SM, Udey LR (1979) Influence of substrate composition on marine microfouling. Appl Environ Microbiol 38:987–995

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Dang H, Lovell CR (2000) Bacterial primary colonization and early succession on surfaces in marine waters as determined by amplified rRNA gene restriction analysis and sequence analysis of 16S rRNA genes. Appl Environ Microbiol 66:467–475. https://doi.org/10.1128/AEM.66.2.467-475.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Whitehead KA, Verran J (2009) The effect of substratum properties on the survival of attached microorganisms on inert surfaces. Marine and industrial biofouling. Springer, Berlin, Heidelberg, pp 13–33

    Chapter  Google Scholar 

  50. Roberts D, Rittschof D, Holm E, Schmidt AR (1991) Factors influencing initial larval settlement: temporal, spatial and surface molecular components. J Exp Mar Biol Ecol 150:203–221. https://doi.org/10.1016/0022-0981(91)90068-8

    Article  Google Scholar 

  51. Becker K (1993) Attachment strength and colonization patterns of two macrofouling species on substrata with different surface tension (in situ studies). Mar Biol 117:301–309. https://doi.org/10.1007/BF00345675

    Article  Google Scholar 

  52. Sudhakar M, Doble M, Murthy PS, Venkatesan R (2008) Marine microbe-mediated biodegradation of low-and high-density polyethylenes. Int Biodeterior Biodegrad 61:203–213. https://doi.org/10.1016/j.ibiod.2007.07.011

    Article  CAS  Google Scholar 

  53. Kumar NV, Venkatesan R, Doble M (2014) Macrofouling and bioadhesion of organisms on polymers. In: Doble R, Venkatesan R, Kumar NV (eds) Polymers in a marine environment. Smithers RapraTechnology, p 101–120

  54. Graham MV, Cady NC (2014) Nano and microscale topographies for the prevention of bacterial surface fouling. Coatings 4:37–59. https://doi.org/10.3390/coatings4010037

    Article  CAS  Google Scholar 

  55. Sabev HA, Barratt SR, Handley PS, Robson GD, Greenhalgh M (2006) Biodegradation and biodeterioration of man-made polymeric materials. In: Gadd GM (ed) Fungi in biogeochemical cycles. Cambridge University Press, Cambridge, pp 212–235

    Chapter  Google Scholar 

  56. Wen G, Kötzsch S, Vital M, Egli T, Ma J (2015) BioMig-A method to evaluate the potential release of compounds from and the formation of biofilms on polymeric materials in contact with drinking water. Environ Sci Technol 49:11659–11669. https://doi.org/10.1021/acs.est.5b02539

    Article  CAS  PubMed  Google Scholar 

  57. Fries E, Dekiff JH, Willmeyer J, Nuelle MT, Ebert M, Remy D (2013) Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environ Sci Process Impacts 15:1949–1956. https://doi.org/10.1039/C3EM00214D

    Article  CAS  PubMed  Google Scholar 

  58. Koelmans AA, Besseling E, Foekema EM (2014) Leaching of plastic additives to marine organisms. Environ Pollut 187:49–54. https://doi.org/10.1016/j.envpol.2013.12.013

    Article  CAS  PubMed  Google Scholar 

  59. Hermabessiere L, Dehaut A, Paul-Pont I, Lacroix C, Jezequel R, Soudant P, Duflos G (2017) Occurrence and effects of plastic additives on marine environments and organisms: a review. Chemosphere 182:781–793. https://doi.org/10.1016/j.chemosphere.2017.05.096

    Article  CAS  PubMed  Google Scholar 

  60. Reynolds CS (1997) Vegetation processes in the pelagic: a model for ecosystem theory Oldendorf/Luhe: Ecology Institute

  61. Soininen J (2003) Heterogeneity of benthic diatom communities in different spatial scales and current velocities in a turbid river. Arch Hydrobiol 156:551–564. https://doi.org/10.1127/0003-9136/2003/0156-0551

    Article  Google Scholar 

  62. Soininen J (2004) Determinants of benthic diatom community structurein boreal streams: the role of environmental and spatial factors at different scales. Int Rev Hydrobiol 89:139–150. https://doi.org/10.1002/iroh.200310714

    Article  Google Scholar 

  63. Örnólfsdóttir EB, Lumsden SE, Pinckney JL (2004) Nutrient pulsing as a regulator of phytoplankton abundance and community composition in Galveston Bay, Texas. J Exp Mar Biol Ecol 303:197–220. https://doi.org/10.1016/j.jembe.2003.11.016

    Article  Google Scholar 

  64. Dzialowski AR, Smith VH, Wang SH, Martin MC, Jr FD (2011) Effects of non-algal turbidity on cyanobacterial biomass in seven turbid Kansas reservoirs. Lake Reservoir Manag 27:6–14. https://doi.org/10.1080/07438141.2011.551027

    Article  CAS  Google Scholar 

  65. Majewska R, Convey P, De Stefano M (2016) Summer epiphytic diatoms from Terra Nova Bay and Cape Evans (Ross Sea, Antarctica)-a synthesis and final conclusions. PLoS One 11:e0153254. https://doi.org/10.1371/journal.pone.0153254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cardinale BJ, Hillebrand H, Charles DF (2006) Geographic patterns of diversity in streams are predicted by a multivariate model of disturbance and productivity. J Ecol 94:609–618. https://doi.org/10.1111/j.1365-2745.2006.01107.x

    Article  Google Scholar 

  67. Yannarell AC, Triplett EW (2005) Geographic and environmental sources of variation in lake bacterial community composition. Appl Environ Microbiol 71:227–239. https://doi.org/10.1128/AEM.71.1.227-239.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Witt V, Wild C, Anthony K, Diaz-Pulido G, Uthicke S (2011) Effects of ocean acidification on microbial community composition of, and oxygen fluxes through, biofilms from the great barrier reef. Environ Microbiol 13:2976–2989. https://doi.org/10.1111/j.1462-2920.2011.02571.x

    Article  CAS  PubMed  Google Scholar 

  69. Lidbury I, Johnson V, Hall-Spencer JM, Munn CB, Cunliffe M (2012) Community-level response of coastal microbial biofilms to ocean acidification in a natural carbon dioxide vent ecosystem. Mar Pollut Bull 64:1063–1066. https://doi.org/10.1016/j.marpolbul.2012.02.011

    Article  CAS  PubMed  Google Scholar 

  70. Krause E, Wichels A, Giménez L, Lunau M, Schilhabel MB, Gerdts G (2012) Small changes in pH have direct effects on marine bacterial community composition: a microcosm approach. PLoS One 7:e47035. https://doi.org/10.1371/journal.pone.0047035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hassenrück C, Tegetmeyer HE, Ramette A, Fabricius KE (2017) Minor impacts of reduced pH on bacterial biofilms on settlement tiles along natural pH gradients at two CO2 seeps in Papua New Guinea. ICES J Mar Sci 74:978–987. https://doi.org/10.1093/icesjms/fsw204

    Article  Google Scholar 

  72. Masschelein J, Jenner M, Challis GL (2017) Antibiotics from Gram-negative bacteria: a comprehensive overview and selected biosynthetic highlights. Nat Prod Rep 34:712–783. https://doi.org/10.1039/C7NP00010C

    Article  CAS  PubMed  Google Scholar 

  73. Kintaka K, Ono H, Tsubotani S, Harada S, Okazaki H (1984) Thiotropocin, a new sulfur-containing 7-membered-ring antibiotic produced by a Pseudomonas sp. J Antibiot 37:1294–1300. https://doi.org/10.7164/antibiotics.37.1294

    Article  CAS  PubMed  Google Scholar 

  74. Tsubotani S, Wada Y, Kamiya K, Okazaki H, Harada S (1984) Structure of thiotropocin, a new sulfur-containing 7-membered antibiotic. Tetrahedron Lett 25:419–422. https://doi.org/10.1016/S0040-4039(00)99900-3

    Article  CAS  Google Scholar 

  75. Brinkhoff T, Bach G, Heidorn T, Liang L, Schlingloff A, Simon M (2004) Antibiotic production by a Roseobacter clade-affiliated species from the German Wadden Sea and its antagonistic effects on indigenous isolates. Appl Environ Microbiol 70:2560–2565. https://doi.org/10.1128/AEM.70.4.2560-2565.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Greer EM, Aebisher D, Greer A, Bentley R (2008) Computational studies of the Tropone natural products, Thiotropocin, Tropodithietic acid, and Troposulfenin. Significance of Thiocarbonyl–enol Tautomerism. J Org Chem 73:280–283. https://doi.org/10.1021/jo7018416

    Article  CAS  PubMed  Google Scholar 

  77. D’Alvise PW, Phippen CB, Nielsen KF, Gram L (2016) Influence of iron on production of the antibacterial compound tropodithietic acid and its noninhibitory analog in Phaeobacter inhibens. Appl Environ Microbiol 82:502–509. https://doi.org/10.1128/AEM.02992-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chen L, Gin KY, He Y (2016) Effects of sulfate on microcystin production, photosynthesis, and oxidative stress in Microcystis aeruginosa. Environ Sci Pollut Res 23:3586–3595. https://doi.org/10.1007/s11356-015-5605-1

    Article  CAS  Google Scholar 

  79. Yang Q, Cai S, Dong S, Chen L, Chen J, Cai T (2016) Biodegradation of 3-methyldiphenylether (MDE) by Hydrogenophaga atypical strain QY7-2 and cloning of the methy-oxidation gene mdeABCD. Sci Rep 6:39270. https://doi.org/10.1038/srep39270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Staskal DF, Hakk H, Bauer D, Diliberto JJ, Birnbaum LS (2006) Toxicokinetics of polybrominated diphenyl ether congeners 47, 99, 100, and 153 in mice. Toxicol Sci 94:28–37. https://doi.org/10.1093/toxsci/kfl091

    Article  CAS  PubMed  Google Scholar 

  81. Wang S, Bai N, Wang B, Feng Z, Hutchins WC, Yang CH, Zhao Y (2015) Characterization of the molecular degradation mechanism of diphenyl ethers by Cupriavidus sp. WS. Environ Sci Pollut Res 22:16914–16926. https://doi.org/10.1007/s11356-015-4854-3

    Article  CAS  Google Scholar 

  82. Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10:3722–3742. https://doi.org/10.3390/ijms10093722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hanphakphoom S, Maneewong N, Sukkhum S, Tokuyama S, Kitpreechavanich V (2014) Characterization of poly (L-lactide)-degrading enzyme produced by thermophilic filamentous bacteria Laceyella sacchari LP175. J Gen Appl Microbiol 60:13–22. https://doi.org/10.2323/jgam.60.13

    Article  CAS  PubMed  Google Scholar 

  84. Sriyapai P, Chansiri K, Sriyapai T (2018) Isolation and characterization of polyester-based plastics-degrading Bacteria from compost soils. Microbiol 87:290–300. https://doi.org/10.1134/S0026261718020157

    Article  CAS  Google Scholar 

  85. Anderson CM, Haygood MG (2007) α-proteobacterial symbionts of marine bryozoans in the genus Watersipora. Appl Environ Microbiol 73:303–311. https://doi.org/10.1128/AEM.00604-06

    Article  CAS  PubMed  Google Scholar 

  86. Hudon C, Bourget E (1983) The effect of light on the vertical structure of epibenthic diatom communities. Bot Mar 26:317–330. https://doi.org/10.1515/botm.1983.26.7.317

    Article  Google Scholar 

  87. Gosselain V, Coste M, Campeau S, Ector L, Fauville C, Delmas F, Knoflacher M, Licursi M, Rimet F, Tison J, Tudesque L (2005) A large-scale stream benthic diatom database. In: Segers H, Martens K (eds) Aquatic biodiversity II. Springer, Dordrecht, pp 151–163

    Chapter  Google Scholar 

  88. Majewska R, De Stefano M (2015) Epiphytic diatom communities on Phyllophora antarctica from the Ross Sea. Antarct Sci 27:44–56. https://doi.org/10.1017/S0954102014000327

    Article  Google Scholar 

  89. Reisser J, Shaw J, Hallegraeff G, Proietti M, Barnes DK, Thums M, Wilcox C, Hardesty BD, Pattiaratchi C (2014) Millimeter-sized marine plastics: a new pelagic habitat for microorganisms and invertebrates. PLoS One 9:e100289. https://doi.org/10.1371/journal.pone.0100289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Glasby TM (2000) Surface composition and orientation interact to affect subtidal epibiota. J Exp Mar Biol Ecol 248:177–190. https://doi.org/10.1016/S0022-0981(00)00169-6

    Article  CAS  PubMed  Google Scholar 

  91. Holm ER (2012) Barnacles and biofouling. Integr Comp Biol 52:348–355. https://doi.org/10.1093/icb/ics042

    Article  PubMed  Google Scholar 

  92. Corcoran PL, Biesinger MC, Grifi M (2009) Plastics and beaches: a degrading relationship. Mar Pollut Bull 58:80–84. https://doi.org/10.1016/j.marpolbul.2008.08.022

    Article  CAS  PubMed  Google Scholar 

  93. Cooper DA, Corcoran PL (2010) Effects of mechanical and chemical processes on the degradation of plastic beach debris on the island of Kauai, Hawaii. Mar Pollut Bull 60:650–654. https://doi.org/10.1016/j.marpolbul.2009.12.026

    Article  CAS  PubMed  Google Scholar 

  94. Steckenreiter T, Balanzat E, Fuess H, Trautmann C (1997) Chemical modifications of PET induced by swift heavy ions. Nucl Inst Methods Phys Res B 131:159–166. https://doi.org/10.1016/S0168-583X(97)00364-9

    Article  CAS  Google Scholar 

  95. Kumar V, Sonkawade RG, Chakarvarti SK, Singh P, Dhaliwal AS (2012) Carbon ion beam induced modifications of optical, structural and chemical properties in PADC and PET polymers. Radiat Phys Chem 81:652–658. https://doi.org/10.1016/j.radphyschem.2012.02.027

    Article  CAS  Google Scholar 

  96. Venkatachalam SG, Nayak SG, Labde JV, Gharal PR, Rao K, Kelkar AK (2012) Degradation and recyclability of poly (ethylene terephthalate). In: Polyester, InTech, pp 75–98

  97. Fotopoulou KN, Karapanagioti HK (2017) Degradation of various plastics in the environment. The handbook of environmental chemistry. Springer, Berlin, pp 1–22

    Google Scholar 

  98. Bonhomme S, Cuer A, Delort AM, Lemaire J, Sancelme M, Scott G (2003) Environmental biodegradation of polyethylene. Polym Degrad Stab 81:441–452. https://doi.org/10.1016/S0141-3910(03)00129-0

    Article  CAS  Google Scholar 

  99. Linos A, Berekaa MM, Reichelt R, Keller U, Schmitt J, Flemming HC, Kroppenstedt RM, Steinbüchel A (2000) Biodegradation of cis-1, 4-polyisoprene rubbers by distinct actinomycetes: microbial strategies and detailed surface analysis. Appl Environ Microbiol 66:1639–1645. https://doi.org/10.1128/AEM.66.4.1639-1645.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Maquelin K, Kirschner C, Choo-Smith LP, van den Braak N, Endtz HP, Naumann D, Puppels GJ (2002) Identification of medically relevant microorganisms by vibrational spectroscopy. J Microbiol Methods 51:255–271. https://doi.org/10.1016/S0167-7012(02)00127-6

    Article  CAS  PubMed  Google Scholar 

  101. Balasubramanian V, Natarajan K, Hemambika B, Ramesh N, Sumathi CS, Kottaimuthu R, Rajesh Kannan V (2010) High-density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, India. Lett Appl Microbiol 51:205–211. https://doi.org/10.1111/j.1472-765X.2010.02883.x

    Article  CAS  PubMed  Google Scholar 

  102. Jack RF, Ringelberg DB, White DC (1992) Differential corrosion rates of carbon steel by combinations of Bacillus sp., Hafnia alvei and Desulfovibrio gigas established by phospholipid analysis of electrode biofilm. Corros Sci 33:1843–1853. https://doi.org/10.1016/0010-938X(92)90188-9

    Article  CAS  Google Scholar 

  103. Steele A, Goddard DT, Beech IB (1994) An atomic force microscopy study of the biodeterioration of stainless steel in the presence of bacterial biofilms. Int Biodeterior Biodegrad 34:35–46. https://doi.org/10.1016/0964-8305(94)90018-3

    Article  CAS  Google Scholar 

  104. Sheng X, Ting YP, Pehkonen SO (2007) The influence of sulphate-reducing bacteria biofilm on the corrosion of stainless steel AISI 316. Corros Sci 49:2159–2176. https://doi.org/10.1016/j.corsci.2006.10.040

    Article  CAS  Google Scholar 

  105. Wikieł AJ, Datsenko I, Vera M, Sand W (2014) Impact of Desulfovibrio alaskensis biofilms on corrosion behaviour of carbon steel in marine environment. Bioelectrochemistry 97:52–60. https://doi.org/10.1016/j.bioelechem.2013.09.008

    Article  CAS  PubMed  Google Scholar 

  106. Jayaraman A, Cheng ET, Earthman JC, Wood TK (1997) Importance of biofilm formation for corrosion inhibition of SAE 1018 steel by axenic aerobic biofilms. J Ind Microbiol Biotechnol 18:396–401. https://doi.org/10.1038/sj.jim.2900396

    Article  CAS  PubMed  Google Scholar 

  107. Volkland HP, Harms H, Knopf K, Wanner O, Zehnder AJ (2000a) Corrosion inhibition of mild steel by bacteria. Biofouling 15:287–297. https://doi.org/10.1080/08927010009386319

    Article  CAS  Google Scholar 

  108. Volkland HP, Harms H, Müller B, Repphun G, Wanner O, Zehnder AJ (2000b) Bacterial phosphating of mild (unalloyed) steel. Appl Environ Microbiol 66:4389–4395. https://doi.org/10.1128/AEM.66.10.4389-4395.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Edwards JL, Smith DL, Connolly J, McDonald JE, Cox MJ, Joint I, Edwards C, McCarthy AJ (2010) Identification of carbohydrate metabolism genes in the metagenome of a marine biofilm community shown to be dominated by Gammaproteobacteria and Bacteroidetes. Genes 1:371–384. https://doi.org/10.3390/genes1030371

    Article  PubMed  PubMed Central  Google Scholar 

  110. Morris RM, Longnecker K, Giovannoni SJ (2006) Pirellula and OM43 are among the dominant lineages identified in an Oregon coast diatom bloom. Environ Microbiol 8:1361–1370. https://doi.org/10.1111/j.1462-2920.2006.01029.x

    Article  CAS  PubMed  Google Scholar 

  111. Wagner M, Horn M (2006) The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Curr Opin Biotechnol 17:241–249. https://doi.org/10.1016/j.copbio.2006.05.005

    Article  CAS  PubMed  Google Scholar 

  112. Longford SR, Tujula NA, Crocetti GR, Holmes AJ, Holmström C, Kjelleberg S, Steinberg PD, Taylor MW (2007) Comparisons of diversity of bacterial communities associated with three sessile marine eukaryotes. Aquat Microb Ecol 48:217–229. https://doi.org/10.3354/ame048217

    Article  Google Scholar 

  113. Hempel M, Blume M, Blindow I, Gross EM (2008) Epiphytic bacterial community composition on two common submerged macrophytes in brackish water and freshwater. BMC Microbiol 8:58. https://doi.org/10.1186/1471-2180-8-58

    Article  PubMed  PubMed Central  Google Scholar 

  114. Bengtsson MM, Øvreås L (2010) Planctomycetes dominate biofilms on surfaces of the kelp Laminaria hyperborea. BMC Microbiol 10:261. https://doi.org/10.1186/1471-2180-10-261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rogers TE (2005) Cellulase and hemicellulase activity within the Tipula abdominalis larval gut. Dissertation, University of Georgia

  116. Rastogi G, Bhalla A, Adhikari A, Bischoff KM, Hughes SR, Christopher LP, Sani RK (2010) Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains. Bioresour Technol 101:8798–8806. https://doi.org/10.1016/j.biortech.2010.06.001

    Article  CAS  PubMed  Google Scholar 

  117. Mohanta YK (2014) Isolation of cellulose-degrading actinomycetes and evaluation of their cellulolytic potential. Bioeng Biosci 2:1–5. https://doi.org/10.13189/bb.2014.020101

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Mr. Ahmed Al Rawahi and Mr. Abdullah Al Nashri for their help during the experimental setup and sample collection. We would also like to acknowledge the Technical Unit of University of Nizwa and Dr. Abdul Munam, Sultan Qaboos University, for their kind guidance during the FTIR analysis and data interpretation. RA would like to thank the Hanse-Wissenschaftskolleg (HWK), Institute for Advanced Study, Germany, for supporting his study group.

Funding

This research was financially supported by the collaborative grant (SQU-GCC/CL/17/02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raeid M. M. Abed.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 3185 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthukrishnan, T., Al Khaburi, M. & Abed, R.M.M. Fouling Microbial Communities on Plastics Compared with Wood and Steel: Are They Substrate- or Location-Specific?. Microb Ecol 78, 361–374 (2019). https://doi.org/10.1007/s00248-018-1303-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-018-1303-0

Keywords

Navigation