Skip to main content
Log in

Effects of an Early Successional Biological Soil Crust from a Temperate Coastal Sand Dune (NE Germany) on Soil Elemental Stoichiometry and Phosphatase Activity

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Early successional biological soil crusts (BSCs), a consortium of bacteria, cyanobacteria, and other microalgae, are one of the first settlement stages on temperate coastal sand dunes. In this study, we investigated the algal biomass (Chlorophyll a (Chl a)), algal (Calgal) and microbial carbon (Cmic), elemental stoichiometry (C:N:P), and acid and alkaline phosphatase activity (AcidPA and AlkPA) of two algae-dominated BSCs from a coastal white dune (northeast Germany, on the southwestern Baltic Sea) which differed in the exposure to wind forces. The dune sediment (DS) was generally low in total carbon (TC), nitrogen (TN), and phosphorus (TP). These elements, together with the soil organic matter (SOM) accumulated in the BSC layer and in the sediment underneath (crust sediment CS), leading to initial soil development. The more disturbed BSC (BSC1) exhibited lower algal and microbial biomass and lower Calgal/Cmic ratios than the undisturbed BSC (BSC2). The BSC1 accumulated more organic carbon (OC) than BSC2. However, the OC in the BSC2 was more effectively incorporated into Cmic than in the BSC1, as indicated by lower OC:Cmic ratios. The AcidPA (1.1–1.3 μmol g−1 DM h−1 or 147–178 μg g−1 DM h−1) and AlkPA (2.7–5.5 μmol g−1 DM h−1 or 372–764 μg g−1 DM h−1) were low in both BSCs. The PA, together with the elemental stoichiometry, indicated no P limitation of both BSCs but rather water limitation followed by N limitation for the algae community and a carbon limitation for the microbial community. Our results explain the observed distribution of early successional and more developed BSCs on the sand dune.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Martínez ML, Psuty NP, Lubke RA (2004) A perspective on coastal dunes. In: Coast. Dunes, Ecol. Conserv. Springer, Berlin, Heidelberg, pp 3–10

  2. Hesp PA (1991) Ecological processes and plant adaptations on coastal dunes. J. Arid Environ. 21:165–191

    Article  Google Scholar 

  3. Zhang Y (2005) The microstructure and formation of biological soil crusts in their early developmental stage. Chin. Sci. Bull. 50:117–121. https://doi.org/10.1007/BF02897513

    Article  Google Scholar 

  4. Belnap J, Büdel B, Lange OL (2001) Biological soil crusts: characteristics and distribution. In: Belnap J, Lange OL (eds) Biol. soil crusts Struct. Funct. Manag. Springer Berlin Heidelberg, pp 3–30

  5. Belnap J (2003) The world at your feet: desert biological soil crusts. Front. Ecol. Environ. 1:181–189. https://doi.org/10.1890/1540-9295(2003)001[0181:TWAYFD]2.0.CO;2

  6. Weber B, Büdel B, Belnap J (2016) Biological soil crusts: an organizing principle in drylands. doi: 10.1007/978-3-319-30214-0

  7. Karsten U, Herburger K, Holzinger A (2016) Living in biological soil crust communities of African deserts-physiological traits of green algal Klebsormidium species (Streptophyta) to cope with desiccation, light and temperature gradients. J. Plant Physiol. 194:2–12. https://doi.org/10.1016/j.jplph.2015.09.002

    Article  CAS  PubMed  Google Scholar 

  8. Lange OL (2001) Photosynthesis of soil-crust biota as dependent on environmental factors. In: Belnap J, Lange OL (eds) Biol. soil crusts Struct. Funct. Manag. Springer Berlin Heidelberg, pp 217–240

  9. Van Ancker JAM Den, Jungerius PD, Mur LR (1985) The role of algae in the stabilization of coastal dune blowouts. Earth Surf. Process. Landf. 10:189–192. doi: https://doi.org/10.1002/esp.3290100210

  10. Danin A, Bar-Or Y, Dor I, Yisraeli T (1990) The role of cyanobacterial in stabilization of sand dunes in southern Israel. Horizons Geogr:169–178. https://doi.org/10.2307/23701553

  11. Martens DA, Frankenberger WT (1992) Decomposition of bacterial polymers in soil and their influence on soil structure. Biol. Fertil. Soils 13:65–73. https://doi.org/10.1007/BF00337337

    Article  CAS  Google Scholar 

  12. Belnap J, Eldridge D (2001) Disturbance and recovery of biological soil crusts. In: Belnap J, Lange OL (eds) Biol. soil crusts Struct. Funct. Manag. Springer Berlin Heidelberg, pp 363–383

  13. Harper KT, Marble JR (1988) A role for nonvascular plants in management of arid and semiarid rangelands. In: Veg. Sci. Appl. Rangel. Anal. Manag. Springer Netherlands, Dordrecht, pp 135–169

  14. Rao B, Liu Y, Lan S, Wu P, Wang W, Li D (2012) Effects of sand burial stress on the early developments of cyanobacterial crusts in the field. Eur. J. Soil Biol. 48:48–55. https://doi.org/10.1016/j.ejsobi.2011.07.009

    Article  Google Scholar 

  15. Aggenbach CJS, Kooijman AM, Fujita Y, van der Hagen H, van Til M, Cooper D, Jones L (2017) Does atmospheric nitrogen deposition lead to greater nitrogen and carbon accumulation in coastal sand dunes? Biol. Conserv. 212:416–422. https://doi.org/10.1016/j.biocon.2016.12.007

    Article  Google Scholar 

  16. Johnsen I, Christensen SN, Riis-Nielsen T (2014) Nitrogen limitation in the coastal heath at Anholt, Denmark. J. Coast. Conserv. 18:369–382. https://doi.org/10.1007/s11852-014-0323-2

    Article  Google Scholar 

  17. Tackett NW, Craft CB (2010) Ecosystem development on a coastal barrier island dune chronosequence. J. Coast. Res. 26:736–742. https://doi.org/10.2112/08-1167.1

    Article  CAS  Google Scholar 

  18. Rowe EC, Evans CD, Emmett BA, Reynolds B, Helliwell RC, Coull MC, Curtis CJ (2006) Vegetation type affects the relationship between soil carbon to nitrogen ratio and nitrogen leaching. Water Air Soil Pollut. 177:335–347. https://doi.org/10.1007/s11270-006-9177-z

    Article  CAS  Google Scholar 

  19. Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, Pöschl U (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat. Geosci. 5:459–462. https://doi.org/10.1038/ngeo1486

    Article  CAS  Google Scholar 

  20. Magee WE, Burris RH (1954) Fixation of N2 and utilization of combined nitrogen by Nostoc muscorum. Am. J. Bot. 41:777–782. https://doi.org/10.2307/2438966

    Article  CAS  Google Scholar 

  21. Silvester WB, Parsons R, Watt PW (1996) Direct measurement of release and assimilation of ammonia in the Gunnera-Nostoc symbiosis. New Phytol. 132:617–625. https://doi.org/10.1111/j.1469-8137.1996.tb01880.x

    Article  CAS  Google Scholar 

  22. Belnap J, Kaltenecker JH, Rosentreter R, et al (2001) Biological soil crusts: ecology and management. United States Department of the Interior, Denver, Colorado

  23. Belnap J, Prasse R, Harpe KT (2001) Influence of biological soil crusts on soil environments and vascular plants. In: Belnap J, Lange OL (eds) Biol. soil crusts Struct. Funct. Manag. Springer Berlin Heidelberg, pp 281–300

  24. Belnap J (2001) Factors influencing nitrogen fixation and nitrogen release in biological soil crusts. In: Belnap J, Lange OL (eds) Biol. soil crusts Struct. Funct. Manag. Springer Berlin Heidelberg, pp 241–261

  25. Pointing SB, Belnap J (2012) Microbial colonization and controls in dryland systems. Nat. Rev. Microbiol. 10:551–562. https://doi.org/10.1038/nrmicro2831

    Article  CAS  PubMed  Google Scholar 

  26. Rogers SL, Burns RG (1994) Changes in aggregate stability, nutrient status, indigenous microbial populations, and seedling emergence, following inoculation of soil with Nostoc muscorum. Biol. Fertil. Soils 18:209–215. https://doi.org/10.1007/BF00647668

    Article  Google Scholar 

  27. Shields LM, Durrell LW (1964) Algae in relation to soil fertility. Bot. Rev. 30:92–128. https://doi.org/10.1007/BF02858614

    Article  CAS  Google Scholar 

  28. Rao DLN, Burns RG (1990) Use of blue-green algae and bryophyte biomass as a source of nitrogen for oil-seed rape. Biol. Fertil. Soils 10:61–64. https://doi.org/10.1007/BF00336126

    Article  Google Scholar 

  29. Belnap J (2001) Microbes and microfauna associated with biological soil crusts. In: Belnap J, Lange OL (eds) Biol. soil crusts Struct. Funct. Manag. Springer, Berlin Heidelberg, pp 167–174

    Chapter  Google Scholar 

  30. Spohn M, Ermak A, Kuzyakov Y (2013) Microbial gross organic phosphorus mineralization can be stimulated by root exudates—a 33P isotopic dilution study. Soil Biol. Biochem. 65:254–263. https://doi.org/10.1016/j.soilbio.2013.05.028

    Article  CAS  Google Scholar 

  31. Filippelli GM (2017) The global phosphorus cycle. In: Lal R, Stewart BA (eds) Soil phosphorus; Adv. soil Sci. CRC Press, pp 1–21

  32. Doolette AL, Smernik RJ (2011) Soil organic phosphorus speciation using spectroscopic techniques. In: Bünemann EK, Oberson A, Frossard E (eds) Phosphorus action, Biol. Process. soil phosphorus Cycl. Springer, pp 3–36

  33. Khan MS, Zaidi A, Ahmad E (2014) Mechanisms of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms. In: Khan MS, Zaidi A, Musarrat J (eds) Phosphate solubilizing Microorg. Springer, pp 31–62

  34. Jones DL, Oburger E (2011) Solubilization of phosphorus by soil microorganisms. In: Bünemann EK, Oberson A, Frossard E (eds) Phosphorus Action, Soil Biol., 26th ed. Springer, pp 169–198

  35. Yi Y, Huang W, Ge Y (2008) Exopolysaccharide: a novel important factor in the microbial dissolution of tricalcium phosphate. World J. Microbiol. Biotechnol. 24:1059–1065. https://doi.org/10.1007/s11274-007-9575-4

    Article  CAS  Google Scholar 

  36. Ochoa-Loza FJ, Artiola JF, Maier RM (2001) Stability constants for the complexation of various metals with a rhamnolipid biosurfactant. J. Environ. Qual. 30:479–485. https://doi.org/10.2134/jeq2001.302479x

    Article  CAS  PubMed  Google Scholar 

  37. Fox TR (1995) The influence of low molecular weight organic acids on properties and processes in forest soils. In: McFee WW, Kelly JM (eds) Carbon Forms Funct. For. Soils. Soil Science Society of America, pp 43–62

  38. Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus Action, Soil Biol., 26th ed. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 215–243

  39. Cembella AD, Antia NJ, Harrison PJ (1984) The utilization of inorganic and organic phosphorous compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective: part 1. Crit. Rev. Microbiol. 10:317–391. https://doi.org/10.3109/10408418209113567

    Article  CAS  PubMed  Google Scholar 

  40. Chapman VJ (1976) Coastal vegetation, 2nd ed. doi: 10.1016/B978-0-08-020896-1.50012-X

  41. Komárek J, Anagnostidis K (1998) Süsswasserflora von Mitteleuropao, Bd. 19/1: Cyanoprokaryota 1 Teil: Chroococcales. Spektrum Akademischer Verlag

  42. Komárek J, Anagnostidis K (2005) Süsswasserflora von Mitteleuropa, Bd. 19/2: Cyanoprokaryota 2. Teil: Oscillatoriales. Spektrum Akademischer Verlag

  43. Komárek J (2013) Süsswasserflora von Mitteleuropa, Bd. 19/3: Cyanoprokaryota 3. Teil: Heterocytous genera. Springer Spektrum

  44. Krammer K, Lange-Bertalot H (1991) Süsswasserflora von Mitteleuropao, Bd. 2/3: Bacillariophyceae 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. Gustav Fischer Verlag

  45. Krammer K, Lange-Bertalot H (1991) Süsswasserflora von Mitteleuropao, Bd. 2/4: Bacillariophyceae 4. Teil: Achnanthaceae. Gustav Fischer Verlag

  46. Ettl H, Gärtner G (2014) Syllabus der Boden-, Luft- und Flechtenalgen, 2nd ed. doi: 10.1007/978-3-642-39462-1

  47. Sponagel H, Grottenthaler W, Hartmann K-J et al (2005) Bodenkundliche Kartieranleitung, Ad-hoc-Arbeitsgruppe Boden der Staatlichen Geologischen Dienste und der Bundesanstalt für Geowissenschaften und Rohstoffe5th edn. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart

    Google Scholar 

  48. Lan S, Wu L, Zhang D, Hu C, Liu Y (2011) Ethanol outperforms multiple solvents in the extraction of chlorophyll-a from biological soil crusts. Soil Biol. Biochem. 43:857–861. https://doi.org/10.1016/j.soilbio.2010.12.007

    Article  CAS  Google Scholar 

  49. Ritchie RJ (2008) Universal chlorophyll equations for estimating chlorophylls a, b, c, and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents. Photosynthetica 46:115–126. https://doi.org/10.1007/s11099-008-0019-7

    Article  CAS  Google Scholar 

  50. Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19:703–707. https://doi.org/10.1016/0038-0717(87)90052-6

    Article  CAS  Google Scholar 

  51. Joergensen RG (1996) The fumigation-extraction method to estimate soil microbial biomass: calibration of the kEC value. Soil Biol. Biochem. 28:25–31. https://doi.org/10.1016/0038-0717(95)00102-6

    Article  CAS  Google Scholar 

  52. Jenkinson DS, Brookes PC, Powlson DS (2004) Measuring soil microbial biomass. Soil Biol. Biochem. 36:5–7. https://doi.org/10.1016/j.soilbio.2003.10.002

    Article  CAS  Google Scholar 

  53. Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1:301–307. https://doi.org/10.1016/0038-0717(69)90012-1

    Article  CAS  Google Scholar 

  54. Eivazi F, Tabatabai MA (1977) Phosphatases in soils. Soil Biol. Biochem. 9:167–172. https://doi.org/10.1016/0038-0717(77)90070-0

    Article  CAS  Google Scholar 

  55. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4:9

    Google Scholar 

  56. Belnap J (2001) Comparative structure of physical and biological soil crusts. In: Belnap J, Lange OL (eds) Biol. soil crusts Struct. Funct. Manag. Springer, Berlin Heidelberg, pp 177–191

    Chapter  Google Scholar 

  57. Büdel B, Darienko T, Deutschewitz K, Dojani S, Friedl T, Mohr KI, Salisch M, Reisser W, Weber B (2009) Southern african biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb. Ecol. 57:229–247. https://doi.org/10.1007/s00248-008-9449-9

    Article  PubMed  Google Scholar 

  58. Kidron GJ (1999) Differential water distribution over dune slopes as affected by slope position and microbiotic crust, Negev Desert, Israel. Hydrol. Process. 13:1665–1682. https://doi.org/10.1002/(SICI)1099-1085(19990815)13:11<1665::AID-HYP836>3.0.CO;2-R

    Article  Google Scholar 

  59. Garcia-Pichel F, Belnap J (1996) Microenvironments and microscale productivity of cyanobacterial desert crusts. J. Phycol. 32:774–782. https://doi.org/10.1111/j.0022-3646.1996.00774.x

    Article  Google Scholar 

  60. Görs S, Schumann R, Häubner N, Karsten U (2007) Fungal and agal biomass in biofilms on artificial surfaces quantified by ergosterol and chlorophyll a as biomarkers. Int. Biodeterior. Biodegrad. 60:50–59

    Article  Google Scholar 

  61. Pinckney J, Zingmark RG (1993) Biomass and production of benthic microalgal communities in estuarine habitats. Estuaries 16:887–897. https://doi.org/10.2307/1352447

    Article  CAS  Google Scholar 

  62. Cahoon LB, Cooke JE (1992) Benthic microalgal production in Onslow Bay, North Carolina, USA. Mar. Ecol. Prog. Ser. 84:185–196. https://doi.org/10.3354/meps084185

    Article  Google Scholar 

  63. Brito AC, Benjoucef I, Jesus B et al (2013) Seasonality of microphytobenthos revealed by remote-sensing in a south European estuary. Cont. Shelf Res. 66:83–91. https://doi.org/10.1016/j.csr.2013.07.004

    Article  Google Scholar 

  64. Xu X, Thornton PE, Post WM (2013) A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Glob. Ecol. Biogeogr. 22:737–749. https://doi.org/10.1111/geb.12029

    Article  Google Scholar 

  65. Schulz K, Mikhailyuk T, Dreßler M, Leinweber P, Karsten U (2016) Biological soil crusts from coastal dunes at the Baltic Sea: cyanobacterial and algal biodiversity and related soil properties. Microb. Ecol. 71:178–193. https://doi.org/10.1007/s00248-015-0691-7

    Article  CAS  PubMed  Google Scholar 

  66. Koerselman W, Meuleman A (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 33:1441–1450. https://doi.org/10.2307/2404783

    Article  Google Scholar 

  67. Redfield AC (1934) On the proportions of organic derivatives in sea water and their relation to the composition of plankton. In: Daniel RJ (ed) James Johnstone Meml. Vol. Liverpool University press, Liverpool, pp 176–192

    Google Scholar 

  68. Finkel ZV, Beardall J, Flynn KJ, Quigg A, Rees TAV, Raven JA (2010) Phytoplankton in a changing world: cell size and elemental stoichiometry. J. Plankton Res. 32:119–137. https://doi.org/10.1093/plankt/fbp098

    Article  CAS  Google Scholar 

  69. Bu C, Wu S, Xie Y, Zhang X (2013) The study of biological soil crusts: hotspots and prospects. Clean - Soil, Air, Water 41:899–906. https://doi.org/10.1002/clen.201100675

    Article  CAS  Google Scholar 

  70. Hacker N, Ebeling A, Gessler A, Gleixner G, González Macé O, de Kroon H, Lange M, Mommer L, Eisenhauer N, Ravenek J, Scheu S, Weigelt A, Wagg C, Wilcke W, Oelmann Y (2015) Plant diversity shapes microbe-rhizosphere effects on P mobilisation from organic matter in soil. Ecol. Lett. 18:1356–1365. https://doi.org/10.1111/ele.12530

    Article  PubMed  Google Scholar 

  71. Henry HAL (2013) Soil extracellular enzyme dynamics in a changing climate. Soil Biol. Biochem. 56:53–59. https://doi.org/10.1016/j.soilbio.2012.10.022

    Article  CAS  Google Scholar 

  72. Nannipieri P, Johnson RL, Paul EA (1978) Criteria for measurement of microbial growth and activity in soil. Soil Biol. Biochem. 10:223–229. https://doi.org/10.1016/0038-0717(78)90100-1

    Article  CAS  Google Scholar 

  73. Allison SD, Vitousek PM (2005) Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol. Biochem. 37:937–944. https://doi.org/10.1016/j.soilbio.2004.09.014

    Article  CAS  Google Scholar 

  74. Burns RG (1982) Enzyme activity in soil: location and a possible role in microbial ecology. Soil Biol. Biochem. 14:423–427. https://doi.org/10.1016/0038-0717(82)90099-2

    Article  CAS  Google Scholar 

  75. Hou E, Chen C, Wen D, Liu X (2015) Phosphatase activity in relation to key litter and soil properties in mature subtropical forests in China. Sci. Total Environ. 515–516:83–91. https://doi.org/10.1016/j.scitotenv.2015.02.044

    Article  CAS  PubMed  Google Scholar 

  76. Zhang W, Qiao W, Gao D, Dai Y, Deng J, Yang G, Han X, Ren G (2018) Relationship between soil nutrient properties and biological activities along a restoration chronosequence of Pinus tabulaeformis plantation forests in the Ziwuling Mountains, China. Catena 161:85–95. https://doi.org/10.1016/J.CATENA.2017.10.021

    Article  CAS  Google Scholar 

  77. Borowik A, Wyszkowska J (2016) Soil moisture as a factor affecting the microbiological and biochemical activity of soil. Plant, Soil Environ. 62:250–255. https://doi.org/10.17221/158/2016-PSE

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Tatiana Mikhailyuk (National Academy of Science of Ukraine, Institute of Botany) for identifying the BSC’s phototrophic microorganisms. Furthermore, we thank Britta Balz, Elena Heilmann (University of Rostock, Soil Science), and Rita Wulff (University of Rostock, Biological Station Zingst) for valuable technical assistance.

Funding

This research was financially supported by the funding line strategic networks of the Leibniz Association within the scope of the Leibniz ScienceCampus Phosphorus Research Rostock (SAS-2015-IOW-LWC, www.sciencecampus-rostock.de) and was closely connected to the Research Training Group “Baltic TRANSCOAST” (DFG, Deutsche Forschungsgemeinschaft; grant number GRK 2000/1; publication no. GRK2000/0014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iris Schaub.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schaub, I., Baum, C., Schumann, R. et al. Effects of an Early Successional Biological Soil Crust from a Temperate Coastal Sand Dune (NE Germany) on Soil Elemental Stoichiometry and Phosphatase Activity. Microb Ecol 77, 217–229 (2019). https://doi.org/10.1007/s00248-018-1220-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-018-1220-2

Keywords

Navigation