Skip to main content

Advertisement

Log in

Food Storage by the Savanna Termite Cornitermes cumulans (Syntermitinae): a Strategy to Improve Hemicellulose Digestibility?

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

It has been suggested that food storage inside the nest may offer termites with a nutritional provision during low resource availability. Additionally, feces employed as construction material provide an excellent environment for colonization by microorganisms and, together with the storage of plant material inside the nest, could thus provide some advantage to the termites in terms of lignocellulose decomposition. Here, we conducted for the first time a comprehensive study of the microbial communities associated to a termite exhibiting food storage behavior using Illumina sequencing of the 16S and (ITS2) regions of rRNA genes, together with enzymatic assays and data collected in the field. Cornitermes cumulans (Syntermitinae) stored grass litter in nodules made from feces and saliva located in the nest core. The amount of nodules increased with nest size and isolation, and interestingly, the soluble fraction of extracts from nodules showed a higher activity against hemicellulosic substrates compared to termite guts. Actinobacteria and Sordariales dominated microbial communities of food nodules and nest walls, whereas Spirochetes and Pleosporales dominated gut samples of C. cumulans. Within Syntermitinae, however, gut bacterial assemblages were dissimilar. On the other hand, there is a remarkable convergence of the bacterial community structure of Termitidae nests. Our results suggest that the role of nodules could be related to food storage; however, the higher xylanolytic activity in the nodules and their associated microbiota could also provide C. cumulans with an external source of predigested polysaccharides, which might be advantageous in comparison with litter-feeding termites that do not display food storage behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brune A (2014) Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12:168–180. https://doi.org/10.1038/nrmicro3182

    Article  PubMed  CAS  Google Scholar 

  2. Neupane A, Maynard DS, Bradford MA (2015) Consistent effects of eastern subterranean termites (Reticulitermes flavipes) on properties of a temperate forest soil. Soil Biol Biochem 91:84–91. https://doi.org/10.1016/j.soilbio.2015.08.025

    Article  CAS  Google Scholar 

  3. Siebers N, Martius C, Eckhardt K-U et al (2015) Origin and alteration of organic matter in termite mounds from different feeding guilds of the Amazon rainforests. PLoS One 10:e0123790. https://doi.org/10.1371/journal.pone.0123790

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Breznak JA, Brune A (1994) Role of the microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol 39:453–487

    Article  CAS  Google Scholar 

  5. Dietrich C, Köhler T, Brune A (2014) The cockroach origin of the termite gut microbiota: patterns in bacterial community structure reflect major evolutionary events. Appl Environ Microbiol. https://doi.org/10.1128/AEM.04206-13

  6. Nalepa CA, Bignell DE, Bandi C (2001) Detritivory, coprophagy, and the evolution of digestive mutualisms in Dictyoptera. Insect Soc 48:194–201. https://doi.org/10.1007/PL00001767

    Article  Google Scholar 

  7. Engel MS, Grimaldi DA, Krishna K (2009) Termites (Isoptera): their phylogeny, classification, and rise to ecological dominance. Am Mus Novit 3650:1–27. https://doi.org/10.1206/651.1

    Article  Google Scholar 

  8. Mikaelyan A, Strassert JFH, Tokuda G, Brune A (2014) The fibre-associated cellulolytic bacterial community in the hindgut of wood-feeding higher termites (Nasutitermes spp.). Environ Microbiol 16:2711–2722. https://doi.org/10.1111/1462-2920.12425

    Article  CAS  Google Scholar 

  9. Donovan SE, Eggleton P, Bignell DE (2001) Gut content analysis and a new feeding group classification of termites. Ecol Entomol 26:356–366. https://doi.org/10.1046/j.1365-2311.2001.00342.x

    Article  Google Scholar 

  10. Rahman NA, Parks DH, Willner DL et al (2015) A molecular survey of Australian and North American termite genera indicates that vertical inheritance is the primary force shaping termite gut microbiomes. Microbiome 3:5. https://doi.org/10.1186/s40168-015-0067-8

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mikaelyan A, Dietrich C, Köhler T et al (2015) Diet is the primary determinant of bacterial community structure in the guts of higher termites. Mol Ecol 24:5284–5295. https://doi.org/10.1111/mec.13376

    Article  PubMed  CAS  Google Scholar 

  12. Hongoh Y, Ekpornprasit L, Inoue T et al (2006) Intracolony variation of bacterial gut microbiota among castes and ages in the fungus-growing termite Macrotermes gilvus. Mol Ecol 15:505–516. https://doi.org/10.1111/j.1365-294X.2005.02795.x

    Article  PubMed  CAS  Google Scholar 

  13. Rocha MM, Morales-Corrêa e Castro AC, Cuezzo C et al (2017) Phylogenetic reconstruction of Syntermitinae (Isoptera, Termitidae) based on morphological and molecular data. PLoS One 12:e0174366. https://doi.org/10.1371/journal.pone.0174366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Emerson AE (1952) The neotropical genera Procornitermes and Cornitermes (Isoptera, Termitidae). Bull Am Mus Nat Hist 99:479–539

    Google Scholar 

  15. Schmidt AM, Jacklyn P, Korb J (2014) “Magnetic” termite mounds: is their unique shape an adaptation to facilitate gas exchange and improve food storage? Insect Soc 61:41–49. https://doi.org/10.1007/s00040-013-0322-6

    Article  Google Scholar 

  16. Lima JT, Costa-Leonardo AM (2007) Recursos alimentares explorados pelos cupins (Insecta: Isoptera). Biota Neotrop 7:243–250. https://doi.org/10.1590/S1676-06032007000200027

    Article  Google Scholar 

  17. Holt J (1998) Microbial activity in the mounds of some Australian termites. Appl Soil Ecol 9:183–187. https://doi.org/10.1016/S0929-1393(98)00073-0

    Article  Google Scholar 

  18. Redford KH (1984) The termitaria of Cornitermes cumulans (Isoptera, Termitidae) and their role in determining a potential keystone species. Biotropica 16:112–119. https://doi.org/10.2307/2387842

    Article  Google Scholar 

  19. Darlington JPEC, Dransfield RD (1987) Size relationships in nest populations and mound parameters in the termite Macrotermes michaelseni in Kenya. Insect Soc 34:165–180. https://doi.org/10.1007/BF02224082

    Article  Google Scholar 

  20. Acioli ANS, Constantino R (2015) A taxonomic revision of the neotropical termite genus Ruptitermes (Isoptera, Termitidae, Apicotermitinae). Zootaxa 4032:451–492. https://doi.org/10.11646/zootaxa.4032.5.1

    Article  PubMed  Google Scholar 

  21. Coles De Negret HR, Redford KH (1982) The biology of nine termite species (Isoptera: Termitidae) from the Cerrado of Central Brazil. Psyche (Stuttg) 89:81–106

    Article  Google Scholar 

  22. AOAC (2006) Official Methods of Analysis of AOAC INTERNATIONAL. 18th ed. AOAC INTERNATIONAL, Gaithersburg

  23. Van Soest PJ (1963) Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. J AOAC 46:829–835

    Google Scholar 

  24. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  25. Franco Cairo JPL, Leonardo FC, Alvarez TM et al (2011) Functional characterization and target discovery of glycoside hydrolases from the digestome of the lower termite Coptotermes gestroi. Biotechnol Biofuels 4:50. https://doi.org/10.1186/1754-6834-4-50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Yu Z, Morrison M (2004) Improved extraction of PCR-quality community DNA from digesta and fecal samples. BioTechniques 36:808–812. https://doi.org/10.2144/3605A0808

    Article  PubMed  CAS  Google Scholar 

  27. Caporaso JG, Lauber CL, Walters WA et al (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108:4516–4522. https://doi.org/10.1073/pnas.1000080107

    Article  PubMed  Google Scholar 

  28. White TJ, Bruns S, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, New York, pp 315–322

    Google Scholar 

  29. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

    Article  PubMed  CAS  Google Scholar 

  30. Edgar RC, Haas BJ, Clemente JC et al (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Bengtsson-Palme J, Ryberg M, Hartmann M et al (2013) Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol 4:914–919. https://doi.org/10.1111/2041-210X.12073

    Article  Google Scholar 

  32. Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. https://doi.org/10.1128/AEM.01541-09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Mikaelyan A, Köhler T, Lampert N et al (2015) Classifying the bacterial gut microbiota of termites and cockroaches: a curated phylogenetic reference database (DictDb). Syst Appl Microbiol 38:472–482. https://doi.org/10.1016/j.syapm.2015.07.004

    Article  PubMed  CAS  Google Scholar 

  34. Deshpande V, Wang Q, Greenfield P et al (2016) Fungal identification using a Bayesian classifier and the Warcup training set of internal transcribed spacer sequences. Mycologia 108:1–5. https://doi.org/10.3852/14-293

    Article  PubMed  Google Scholar 

  35. McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. https://doi.org/10.1371/journal.pone.0061217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria ISBN 3-900051-07-0, URL http://www.R-project.org/55:275–286

  37. Pinheiro J, Bates D, DebRoy S, Sarkar D (2016) nlme: linear and nonlinear mixed effects models. R Packag version R package, pp 1–86

  38. Lenth RV (2016) Least-squares means: the R package lsmeans. J Stat Softw 69:1–33. https://doi.org/10.18637/jss.v069.i01

    Article  Google Scholar 

  39. Graves S, Piepho H-P, Selzer L Sundar DR, et al (2015) Package “multcompView” visualizations of paired comparisons. R Packag. https://CRAN.R-project.org/package=multcompView

  40. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300. https://doi.org/10.2307/2346101

    Article  Google Scholar 

  41. Wickham H (2009) ggplot2 elegant graphics for data analysis. Media. https://doi.org/10.1007/978-0-387-98141-3

  42. Neuwirth E (2014) RColorBrewer: ColorBrewer palettes. R Packag version, pp 11–2. https://cran.R-project.org/package=RColorBrewer

  43. Oksanen J, Blanchet FG, Kindt R, et al (2013) Package “vegan.” R Packag ver 20–8 254. https://doi.org/10.4135/9781412971874.n145

  44. Anderson MJ, Ellingsen KE, McArdle BH (2006) Multivariate dispersion as a measure of beta diversity. Ecol Lett 9:683–693. https://doi.org/10.1111/j.1461-0248.2006.00926.x

    Article  PubMed  Google Scholar 

  45. De Caceres M, Jansen F(2011) Package “indicspecies.” probability.ca, pp 1–16

  46. Korb J (2003) The shape of compass termite mounds and its biological significance. Insect Soc 50:218–221

    Article  Google Scholar 

  47. Thorne BL, Collins MS, Bjorndal KA (1996) Architecture and nutrient analysis of arboreal carton nests of two neotropical Nasutitermes species (Isoptera: Termitidae), with notes on embedded nodules. Florida Entomol 79:27–37

    Article  Google Scholar 

  48. Franco Cairo JPL, Carazzolle MF, Leonardo FC et al (2016) Expanding the knowledge on lignocellulolytic and redox enzymes of worker and soldier castes from the lower termite Coptotermes gestroi. Front Microbiol 7:1518. https://doi.org/10.3389/fmicb.2016.01518

    Article  PubMed  PubMed Central  Google Scholar 

  49. He S, Ivanova N, Kirton E et al (2013) Comparative metagenomic and metatranscriptomic analysis of hindgut paunch microbiota in wood- and dung-feeding higher termites. PLoS One 8:e61126. https://doi.org/10.1371/journal.pone.0061126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Brauman A, Bignell DE, Tayasu I (2000) Termites: evolution, sociality, symbioses, ecology. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic, Dordrecht, pp 233–259

    Chapter  Google Scholar 

  51. Hu J, Arantes V, Saddler JN (2011) The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? Biotechnol Biofuels 4:36. https://doi.org/10.1186/1754-6834-4-36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Tokuda G, Watanabe H (2007) Hidden cellulases in termites: revision of an old hypothesis. Biol Lett 3:336–339. https://doi.org/10.1098/rsbl.2007.0073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Eriksson T, Börjesson J, Tjerneld F (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzym Microb Technol 31:353–364. https://doi.org/10.1016/S0141-0229(02)00134-5

    Article  CAS  Google Scholar 

  54. Alkasrawi M, Eriksson T, Börjesson J et al (2003) The effect of Tween-20 on simultaneous saccharification and fermentation of softwood to ethanol. Enzym Microb Technol 33:71–78. https://doi.org/10.1016/S0141-0229(03)00087-5

    Article  CAS  Google Scholar 

  55. Fall S, Hamelin J, Ndiaye F et al (2007) Differences between bacterial communities in the gut of a soil-feeding termite (Cubitermes niokoloensis) and its mounds. Appl Environ Microbiol 73:5199–5208. https://doi.org/10.1128/AEM.02616-06

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Cosarinsky MI (2011) The nest growth of the neotropical mound-building termite, Cornitermes cumulans: a micromorphological analysis. J Insect Sci 11:122. https://doi.org/10.1673/031.011.12201

    Article  PubMed  PubMed Central  Google Scholar 

  57. Visser AA, Nobre T, Currie CR et al (2012) Exploring the potential for actinobacteria as defensive symbionts in fungus-growing termites. Microb Ecol 63:975–985. https://doi.org/10.1007/s00248-011-9987-4

    Article  PubMed  CAS  Google Scholar 

  58. Kuhnigk T, Branke J, Krekeler D et al (1996) A feasible role of sulfate-reducing bacteria in the termite gut. Syst Appl Microbiol 19:139–149. https://doi.org/10.1016/S0723-2020(96)80039-7

    Article  CAS  Google Scholar 

  59. Mohana S, Shah A, Divecha J, Madamwar D (2008) Xylanase production by Burkholderia sp. DMAX strain under solid state fermentation using distillery spent wash. Bioresour Technol 99:7553–7564. https://doi.org/10.1016/j.biortech.2008.02.009

    Article  PubMed  CAS  Google Scholar 

  60. Costa PS, Oliveira PL, Chartone-Souza E, Nascimento AMA (2013) Phylogenetic diversity of prokaryotes associated with the mandibulate nasute termite Cornitermes cumulans and its mound. Biol Fertil Soils 49:567–574. https://doi.org/10.1007/s00374-012-0742-x

    Article  CAS  Google Scholar 

  61. Warnecke F, Luginbühl P, Ivanova N et al (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565. https://doi.org/10.1038/nature06269

    Article  PubMed  CAS  Google Scholar 

  62. Mikaelyan A, Meuser K, Brune A (2017) Microenvironmental heterogeneity of gut compartments drives bacterial community structure in wood- and humus-feeding higher termites. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fiw210

  63. Otani S, Hansen LH, Sørensen SJ, Poulsen M (2016) Bacterial communities in termite fungus combs are comprised of consistent gut deposits and contributions from the environment. Microb Ecol 71:207–220. https://doi.org/10.1007/s00248-015-0692-6

    Article  PubMed  CAS  Google Scholar 

  64. Stackebrandt E (2014) The family Lachnospiraceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes: firmicutes and tenericutes. Springer, Berlin, pp 197–201

  65. Constantino R (2015) Cupins do Cerrado. Technical Books, Rio de Janeiro

  66. Machida M, Kitade O, Miura T, Matsumoto T (2001) Nitrogen recycling through proctodeal trophallaxis in the Japanese damp-wood termite Hodotermopsis japonica (Isoptera, Termopsidae). Insect Soc 48:52–56. https://doi.org/10.1007/PL00001745

    Article  Google Scholar 

  67. Poulsen M, Hu H, Li C et al (2014) Complementary symbiont contributions to plant decomposition in a fungus-farming termite. Proc Natl Acad Sci U S A 111:14500–14505. https://doi.org/10.1073/pnas.1319718111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Scully ED, Geib SM, Hoover K et al (2013) Metagenomic profiling reveals lignocellulose degrading system in a microbial community associated with a wood-feeding beetle. PLoS One 8:e73827. https://doi.org/10.1371/journal.pone.0073827

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Ni J, Tokuda G (2013) Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. Biotechnol Adv 31:838–850. https://doi.org/10.1016/j.biotechadv.2013.04.005

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Johana Rincones, Tiago Carrijo, and two anonymous reviewers for their comments on the manuscript. We would like to acknowledge the CTBE-NGS facility at the Brazilian Bioethanol Science and Technology Laboratory for provision of time and technical support.

Funding

This study was supported by the São Paulo Research Foundation (FAPESP), grant # 2015/21497-6 (A. A.), and the Minas Gerais State Agency for Research and Development – FAPEMIG, grant # CRA-APQ-00878-12 (A. A. and V. X. S.). L. M. was supported by a master degree grant from the Coordination for the Improvement of Higher Education Personnel (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Arab.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Electronic Supplementary Material

ESM 1

(DOCX 2007 kb)

ESM 2

(XLSX 13.0 kb)

ESM 3

(XLSX 229 kb)

ESM 4

(XLSX 45.7 kb)

ESM 5

(XLSX 272 kb)

ESM 6

(XLSX 233 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menezes, L., Alvarez, T.M., Persinoti, G.F. et al. Food Storage by the Savanna Termite Cornitermes cumulans (Syntermitinae): a Strategy to Improve Hemicellulose Digestibility?. Microb Ecol 76, 492–505 (2018). https://doi.org/10.1007/s00248-017-1128-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-1128-2

Keywords

Navigation