Skip to main content
Log in

Intestinal Microbiota of White Shrimp Penaeus vannamei Under Intensive Cultivation Conditions in Ecuador

  • Notes and Short Communications
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The goal of the study was to characterize the intestinal tract bacterial microbiota composition of Penaeus vannamei in intensive commercial ponds in Ecuador, comparing two shrimp-farming phases: nursery and harvest. Bacterial microbiota was examined by sequencing amplicons V2–V3 of the 16S rRNA using Ion Torrent technology. Archaea sequences were detected in both phases. Sequence analyses revealed quantitative and qualitative differences between the nursery phase and the harvest phase in shrimp intestinal microbiota composition. The main differences were observed at the phylum level during the nursery phase, and the prevailing phyla were CKC4 (37.3%), Proteobacteria (29.8%), Actinobacteria (11.6%), and Firmicutes (10.1%). In the harvest phase, the prevailing phyla were Proteobacteria (28.4%), Chloroflexi (19.9%), and Actinobacteria (15.1%). At the genus level, microbiota from the nursery phase showed greater relative abundances of CKC4 uncultured bacterium (37%) and Escherichia-Shigella (18%). On the contrary, in the microbiota of harvested shrimp, the prevailing genera were uncultured Caldilinea (19%) and Alphaproteobacteria with no other assigned rate (10%). The analysis of similarity ANOSIM test (beta diversity) indicated significant differences between the shrimp microbiota for these two farming phases. Similarly, alfa-diversity analysis (Chao1) indicated that the microbiota at harvest was far more diverse than the microbiota during the nursery phase, which showed a homogeneous composition. These results suggest that shrimp microbiota diversify their composition during intensive farming. The present work offers the most detailed description of the microbiota of P. vannamei under commercial production conditions to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Schwarz L. (2005). Visión general del sector acuícola nacional, Ecuador. FAO Fisheries and Aquaculture Department [online]. Rome http://www.fao.org/fishery/countrysector/naso_ecuador/es. Accessed 12 June 2016

  2. FAO. (2017) Fisheries. Aquaculture Department. Statistical Collections. Online Query Panels. FAO-FIGIS. Global Aquaculture Production. FAO-Fisheries and Aquaculture Information and Statistics Service [online query]. http://www.fao.org/fishery/statistics/global-aquaculture-production/query/es. Accessed 02 May 2017

  3. Izvekova GI (2006) Hydrolytic activity of enzymes produced by symbiotic microflora and its role in digestion processes of bream and its intestinal parasite Caryophyllaeus laticeps (Cestoda, Caryophyllidea). Biol. Bull. 33(3):287–292. https://doi.org/10.1134/S1062359006030125

    Article  CAS  Google Scholar 

  4. Roeselers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh CM, Guillemin K, Rawls JF (2011) Evidence for a core gut microbiota in the zebrafish. The ISME Journal 5(10):1595–1160. https://doi.org/10.1038/ismej.2011.38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sullam KE, Essinger SD, Lozupone CA, O’Connor MP, Rosen GL, Knight RO, Russell JA (2012) Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Mol. Ecol. 21(13):3363–3378. https://doi.org/10.1111/j.1365-294X.2012.05552.x

    Article  PubMed  Google Scholar 

  6. Torrecillas S, Montero D, Izquierdo M (2014) Improved health and growth of fish fed mannan oligosaccharides: potential mode of action. Fish and Shellfish Immunology 36(2):525–544. https://doi.org/10.1016/j.fsi.2013.12.029

    Article  CAS  PubMed  Google Scholar 

  7. Colston TJ, Jackson CR (2016) Microbiome evolution along divergent branches of the vertebrate tree of life: what is known and unknown. Mol. Ecol. 25(16):3776–3800. https://doi.org/10.1111/mec.13730

    Article  PubMed  Google Scholar 

  8. Zhang M, Sun Y, Chen K, Yu N, Zhou Z, Chen L, Li E (2014) Characterization of the intestinal microbiota in Pacific white shrimp, Litopenaeus vannamei, fed diets with different lipid sources. Aquaculture 434:449–455. https://doi.org/10.1016/j.aquaculture.2014.09.008

    Article  CAS  Google Scholar 

  9. Qiao F, Liu YK, Sun YH, Wang XD, Chen K, Li TY, Zhang ML (2016) Influence of different dietary carbohydrate sources on the growth and intestinal microbiota of Litopenaeus vannamei at low salinity. Aquac. Nutr. https://doi.org/10.1111/anu.12412

  10. Zheng Y, Yu M, Liu Y, Su Y, Xu T, Yu M, Zhang XH (2016) Comparison of cultivable bacterial communities associated with Pacific white shrimp (Litopenaeus vannamei) larvae at different health statuses and growth stages. Aquaculture 451:163–169. https://doi.org/10.1016/j.aquaculture.2015.09.020

    Article  Google Scholar 

  11. Sha Y, Wang B, Qi C (2016) Bacterial population in intestines of Litopenaeus vannamei fed different probiotics or probiotic supernatant. J. Microbiol. Biotechnol. 26(10):1736–1745

    Article  PubMed  Google Scholar 

  12. Zhang M, Sun Y, Liu Y, Qiao F, Chen L, Liu WT, Li E (2016) Response of gut microbiota to salinity change in two euryhaline aquatic animals with reverse salinity preference. Aquaculture 454:72–80. https://doi.org/10.1016/j.aquaculture.2015.12.014

    Article  CAS  Google Scholar 

  13. Anderson M et al. (2011) Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14(1):19–28. https://doi.org/10.1111/j.1461-0248.2010.01552.x

    Article  PubMed  Google Scholar 

  14. Clarke K (1993) Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18(1):117–143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x

    Article  Google Scholar 

  15. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol. https://doi.org/10.1186/gb-2011-12-6-r60

  16. Tzuc JT, Escalante DR, Herrera RR, Cortés GG, Ortiz ML (2014) Microbiota from Litopenaeus vannamei: digestive tract microbial community of Pacific white shrimp (Litopenaeus vannamei). SpringerPlus 3(1):280. https://doi.org/10.1186/2193-1801-3-280

    Article  PubMed  PubMed Central  Google Scholar 

  17. Huang Z, Li X, Wang L, Shao Z (2014) Changes in the intestinal bacterial community during the growth of white shrimp, Litopenaeus vannamei. Aquac. Res. 6(47):1737–1746. https://doi.org/10.1111/are.12628

    Google Scholar 

  18. Zheng Y, Yu M, Liu Y, Su Y, Xu T, Yu M, Zhang XH (2016) Comparison of cultivable bacterial communities associated with Pacific white shrimp (Litopenaeus vannamei) larvae at different health statuses and growth stages. Aquaculture 451:163–169. https://doi.org/10.1016/j.aquaculture.2015.09.020

    Article  Google Scholar 

  19. Vargas-Albores F, Porchas-Cornejo MA, Martínez-Porchas M, Villalpando-Canchola E, Gollas-Galván T, Martínez-Córdova LR (2017) Bacterial biota of shrimp intestine is significantly modified by the use of a probiotic mixture: a high throughput sequencing approach. Helgol. Mar. Res. 71(1):5. https://doi.org/10.1186/s10152-017-0485-z

    Article  Google Scholar 

  20. Xiong J, Wang K, Wu J, Qiuqian L, Yang K, Qian Y, Zhang D (2015) Changes in intestinal bacterial communities are closely associated with shrimp disease severity. Appl. Microbiol. Biotechnol. 99(16):6911–6919. https://doi.org/10.1007/s00253-015-6632-z

    Article  CAS  PubMed  Google Scholar 

  21. Rungrassamee W, Klanchui A, Maibunkaew S, Karoonuthaisiri N (2016) Bacterial dynamics in intestines of the black tiger shrimp and the Pacific white shrimp during Vibrio harveyi exposure. J. Invertebr. Pathol. 133:12–19. https://doi.org/10.1016/j.jip.2015.11.004

    Article  CAS  PubMed  Google Scholar 

  22. Pérez T, Balcázar JL, Ruiz-Zarzuela I, Halaihel N, Vendrell D, De Blas I, Múzquiz JL (2010) Host–microbiota interactions within the fish intestinal ecosystem. Mucosal Immunol. 3(4):355–360. https://doi.org/10.1038/mi.2010.12

    Article  PubMed  Google Scholar 

  23. Stecher B et al. (2010) Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog. 6(1):e1000711. https://doi.org/10.1371/journal.ppat.1000711

    Article  PubMed  PubMed Central  Google Scholar 

  24. Robinson CJ, Schloss P, Ramos Y, Raffa K, Handelsman J (2010) Robustness of the bacterial community in the cabbage white butterfly larval midgut. Microb. Ecol. 59(2):199–211. https://doi.org/10.1007/s00248-009-9595-8

    Article  PubMed  Google Scholar 

  25. Li CC, Chen JC (2008) The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus under low and high pH stress. Fish & shellfish immunology 25(6):701–709. https://doi.org/10.1016/j.fsi.2008.01.007

    Article  Google Scholar 

  26. Burns AR, Stephens WZ, Stagaman K, Wong S, Rawls JF, Guillemin K, Bohannan BJ (2016) Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. The ISME journal 10(3):655. https://doi.org/10.1038/ismej.2015.142

    Article  CAS  PubMed  Google Scholar 

  27. Yan Q et al. (2016) Environmental filtering decreases with fish development for the assembly of gut microbiota. Environ. Microbiol. 18(12):4739–4754. https://doi.org/10.1111/1462-2920.13365

    Article  CAS  PubMed  Google Scholar 

  28. Kristensen E. (2015). Temporal development of the gut microbiota in European lobster (Homarus gammarus) juveniles exposed to two different water treatment systems. NTNU Norwegian University of Science and Technology, Department of Biotechnology. Open BIBSYS Web [online]: https://brage.bibsys.no/xmlui/handle/11250/2351631. Accessed 15 August 2017.

  29. Cheung MK et al. (2015) Rapid change of microbiota diversity in the gut but not the hepatopancreas during gonadal development of the new shrimp model Neocaridina denticulata. Mar. Biotechnol. 17(6):811–819. https://doi.org/10.1007/s10126-015-9662-8

    Article  CAS  PubMed  Google Scholar 

  30. Rungrassamee W et al. (2013) Bacterial population in intestines of the black tiger shrimp (Penaeus monodon) under different growth stages. PLoS One 8(4):e60802. https://doi.org/10.1371/journal.pone.0060802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cardona E, Gueguen Y, Magré K, Lorgeoux B, Piquemal D, Pierrat F, Saulnier D (2016) Bacterial community characterization of water and intestine of the shrimp Litopenaeus stylirostris in a biofloc system. BMC Microbiol. 16(1):157. https://doi.org/10.1186/s12866-016-0770-z

    Article  PubMed  PubMed Central  Google Scholar 

  32. Briggs M, Funge-Smith S, Subasinghe R, Phillips M (2004) Introductions and movement of Penaeus vannamei and Penaeus stylirostris in Asia and the Pacific. RAP Publication 10:92 http://www.fao.org/docrep/007/ad505e/ad505e00.htm. Accessed 02 May 2017

    Google Scholar 

  33. Yano Y, Hamano K, Satomi M, Tsutsui I, Ban M, Aue-Umneoy D (2014) Prevalence and antimicrobial susceptibility of Vibrio species related to food safety isolated from shrimp cultured at inland ponds in Thailand. Food Control 38:30–36. https://doi.org/10.1016/j.foodcont.2013.09.019

    Article  Google Scholar 

  34. Jayasree L, Janakiram P, Madhavi R (2006) Characterization of Vibrio spp. associated with diseased shrimp from culture ponds of Andhra Pradesh (India). J. World Aquacult. Soc. 37(4):523–532. https://doi.org/10.1111/j.1749-7345.2006.00066.x

    Article  Google Scholar 

  35. Elmahdi S, DaSilva LV, Parveen S (2016) Antibiotic resistance of Vibrio parahaemolyticus and Vibrio vulnificus in various countries: a review. Food Microbiol. 57:128–134. https://doi.org/10.1016/j.fm.2016.02.008

    Article  CAS  PubMed  Google Scholar 

  36. Soto-Rodriguez SA, Gomez-Gil B, Lozano-Olvera R, Betancourt-Lozano M, Morales-Covarrubias MS (2015) Field and experimental evidence of Vibrio parahaemolyticus as the causative agent of acute hepatopancreatic necrosis disease of cultured shrimp (Litopenaeus vannamei) in Northwestern Mexico. Appl. Environ. Microbiol. 81(5):1689–1699. https://doi.org/10.1128/AEM.03610-14

    Article  PubMed  PubMed Central  Google Scholar 

  37. Parvathi A, Kumar HS, Karunasagar I, Karunasagar I (2004) Detection and enumeration of Vibrio vulnificus in oysters from two estuaries along the southwest coast of India, using molecular methods. Appl. Environ. Microbiol. 70(11):6909–6913. https://doi.org/10.1128/AEM.70.11.6909-6913.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Leyton Y, Riquelme C (2008) Vibrios en los sistemas marinos costeros. Rev. Biol. Mar. Oceanogr. 43(3):441–456. https://doi.org/10.4067/S0718-19572008000300004

    Article  Google Scholar 

  39. Christopher FM, Vanderzant C, Parker JD, Conte FS (1978) Microbial flora of pond-reared shrimp (Penaeus stylirostris, Penaeus vannamei, and Penaeus setiferus). J. Food Prot. 41(1):20–23. https://doi.org/10.4315/0362-028X-41.1.20

    Article  Google Scholar 

  40. Chen QS, Yan YL, Yang XQ, Ma Y (2008) Effects of different temperatures on polyphenoloxidase activity, microbiological index and freshness of Metapenaeus ensis. J Food Sci. 10:151

    Google Scholar 

  41. Vieira RHDF, Carvalho EM, Carvalho FC, Silva CM, Sousa OV, Rodrigues DP (2010) Antimicrobial susceptibility of Escherichia coli isolated from shrimp (Litopenaeus vannamei) and pond environment in northeastern Brazil. J. Environ. Sci. Health B 45(3):198–203. https://doi.org/10.1080/03601231003613526.

    Article  CAS  PubMed  Google Scholar 

  42. Parente LS, Costa RA, Vieira GHF, dos REIS EMF, Hofer E, Fonteles AA, dos Fernandes Vieira RHS (2011) Bactérias entéricas presentes em amostras de água e camarão marinho Litopenaeus vannamei oriundos de fazendas de cultivo no Estado do Ceará, Brasil. Braz. J. Vet. Res. Anim. Sci. 48(1):46–53 http://www.revistas.usp.br/bjvras/article/view/34375. Accessed 02 May 2017

    Article  Google Scholar 

  43. Reddy P, Hareesh K, Suneetha Y, Reddy S. (2016). Efficacy of Animal and Plant Feed Ingredients in the Formulation of feeds for induction of growth potentials in penaeid prawn Litopenaeus vannamei. International Journal of Fisheries and Aquatic Studies. 4(2):07–14. http://www.fisheriesjournal.com/archives/2016/vol4issue2/PartA/4-1-30.pdf. Accessed 02 May 2017.

  44. Rungrassamee W, Klanchui A, Chaiyapechara S, Maibunkaew S, Tangphatsornruang S, Jiravanichpaisal P, Karoonuthaisiri N (2013) Bacterial population in intestines of the black tiger shrimp (Penaeus monodon) under different growth stages. PLoS One 8(4):e60802. https://doi.org/10.1371/journal.pone.0060802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vieira F, Jatobá A, Mouriño J, Buglione Neto C, Silva J, Seiffert W, et al. (2016) Use of probiotic-supplemented diet on a Pacific white shrimp farm. Rev. Bras. Zootec. 45(5):203–207. https://doi.org/10.1590/S1806-92902016000500001

    Article  Google Scholar 

  46. Bernal M, Marrero R, Campa-Córdova Á, Mazón-Suástegui J (2017) Probiotic effect of Streptomyces strains alone or in combination with Bacillus and Lactobacillus in juveniles of the white shrimp Litopenaeus vannamei. Aquac. Int. 25(2):927–939. https://doi.org/10.1007/s10499-016-0085-y

    Article  Google Scholar 

  47. Vargas-Albores F, Martínez-Porchas M, Arvayo M, Villalpando-Canchola E, Gollas-Galván T, Porchas-Cornejo M (2016) Immunophysiological response of Pacific white shrimp exposed to a probiotic mixture of Proteobacteria and Firmicutes in farm conditions. N. Am. J. Aquac. 78(3):193–202. https://doi.org/10.1080/15222055.2016.1167797

    Article  Google Scholar 

  48. Chumpol S, Kantachote D, Nitoda T, Kanzaki H (2017) The roles of probiotic purple nonsulfur bacteria to control water quality and prevent acute hepatopancreatic necrosis disease (AHPND) for enhancement growth with higher survival in white shrimp (Litopenaeus vannamei) during cultivation. Aquaculture 473:327–336. https://doi.org/10.1016/j.aquaculture.2017.02.033

    Article  CAS  Google Scholar 

  49. Haryanti H, Sugama K, Tsumura S, Nishijima R (2017) Enhance production of black tiger shrimp Penaeus monodon postlarvae by probiotic bacterium Alteromonas sp. Indonesian Fisheries Research Journal 7(1):1–6. 10.15578/ifrj.7.1.2001.1-6

    Article  Google Scholar 

  50. Duan Y, Zhang Y, Dong H, Wang Y, Zhang J (2017) Effect of the dietary probiotic Clostridium butyricum on growth, intestine antioxidant capacity and resistance to high temperature stress in kuruma shrimp Marsupenaeus japonicus. J. Therm. Biol. 66:93–100. https://doi.org/10.1016/j.jtherbio.2017.04.004

    Article  CAS  PubMed  Google Scholar 

  51. Javadi A, Khatibi S (2017) Effect of commercial probiotic (Protexin®) on growth, survival and microbial quality of shrimp (Litopenaeus vannamei). Nutrition & Food Science 47(2):204–216. https://doi.org/10.1108/NFS-07-2016-0085

    Article  Google Scholar 

  52. Xia Z, Zhu M, Zhang Y (2014) Effects of the probiotic Arthrobacter sp. CW9 on the survival and immune status of white shrimp (Penaeus vannamei). Lett. Appl. Microbiol. 58(1):60–64. https://doi.org/10.1111/lam.12156

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the SENESCYT Ecuador for their contribution and also to Messrs. Avila, owners of the shrimp farm. Fondecyt nos. 1140734 and 1171129 supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Romero.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Electronic Supplementary Material

Online Resource 1

(DOCX 63.8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gainza, O., Ramírez, C., Ramos, A.S. et al. Intestinal Microbiota of White Shrimp Penaeus vannamei Under Intensive Cultivation Conditions in Ecuador. Microb Ecol 75, 562–568 (2018). https://doi.org/10.1007/s00248-017-1066-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-1066-z

Keywords

Navigation