Skip to main content
Log in

The Use of Degenerate Primers in qPCR Analysis of Functional Genes Can Cause Dramatic Quantification Bias as Revealed by Investigation of nifH Primer Performance

  • Methods
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The measurement of functional gene abundance in diverse microbial communities often employs quantitative PCR (qPCR) with highly degenerate oligonucleotide primers. While degenerate PCR primers have been demonstrated to cause template-specific bias in PCR applications, the effect of such bias on qPCR has been less well explored. We used a set of diverse, full-length nifH gene standards to test the performance of several universal nifH primer sets in qPCR. We found significant template-specific bias in all but the PolF/PolR primer set. Template-specific bias caused more than 1000-fold mis-estimation of nifH gene copy number for three of the primer sets and one primer set resulted in more than 10,000-fold mis-estimation. Furthermore, such template-specific bias will cause qPCR estimates to vary in response to beta-diversity, thereby causing mis-estimation of changes in gene copy number. A reduction in bias was achieved by increasing the primer concentration. We conclude that degenerate primers should be evaluated across a range of templates, annealing temperatures, and primer concentrations to evaluate the potential for template-specific bias prior to their use in qPCR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Moisander PH, Beinart RA, Hewson I, White AE, Johnson KS, Carlson CA, Montoya JP, Zehr JP (2010) Unicellular cyanobacterial distributions broaden the oceanic N2 fixation domain. Science 327:1512–1514. doi:10.1126/science.1185468

    Article  CAS  PubMed  Google Scholar 

  2. Fierer N, Jackson JA, Vilgalys R, Jackson RB (2005) Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl. Environ. Microbiol. 71:4117–4120. doi:10.1128/AEM.71.7.4117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Selesi D, Pattis I, Schmid M, Kandeler E, Hartmann A (2007) Quantification of bacterial RubisCO genes in soils by cbbL targeted real-time PCR. J. Microbiol. Methods 69:497–503. doi:10.1016/j.mimet.2007.03.002

    Article  CAS  PubMed  Google Scholar 

  4. Wallenstein MD, Vilgalys RJ (2005) Quantitative analyses of nitrogen cycling genes in soils. Pedobiologia (Jena) 49:665–672. doi:10.1016/j.pedobi.2005.05.005

    Article  CAS  Google Scholar 

  5. Gaby JC, Buckley DH (2012) A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. PLoS One 7:e42149. doi:10.1371/journal.pone.0042149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Throbäck IN, Enwall K, Jarvis Å, Hallin S (2004) Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol. Ecol. 49:401–417. doi:10.1016/j.femsec.2004.04.011

    Article  PubMed  Google Scholar 

  7. Wagner A, Blackstone N, Cartwright P, Dick M, Misof B, Snow P, Wagner GP, Bartels J, Murtha M, Pendleton J (1994) Surveys of gene families using polymerase chain reaction: PCR selection and PCR drift. Syst. Biol. 43:250–261

    Article  Google Scholar 

  8. Kanagawa T (2003) Bias and artifacts in multitemplate polymerase chain reactions (PCR). J. Biosci. Bioeng. 96:317–323. doi:10.1016/S1389-1723(03)90130-7

    Article  CAS  PubMed  Google Scholar 

  9. Polz MF, Cavanaugh CM (1998) Bias in template-to-product ratios in multitemplate PCR. Appl. Environ. Microbiol. 64:3724–3730

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sipos R, Székely AJ, Palatinszky M, Révész S, Márialigeti K, Nikolausz M (2007) Effect of primer mismatch, annealing temperature and PCR cycle number on 16S rRNA gene-targeting bacterial community analysis. FEMS Microbiol. Ecol. 60:341–350. doi:10.1111/j.1574-6941.2007.00283.x

    Article  CAS  PubMed  Google Scholar 

  11. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ (2008) Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl. Environ. Microbiol. 74:2461–2470. doi:10.1128/AEM.02272-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kurata S, Kanagawa T, Magariyama Y, Takatsu K, Yamada K, Yokomaku T, Kamagata Y (2004) Reevaluation and reduction of a PCR bias caused by reannealing of templates. Appl. Environ. Microbiol. 70:7545–7549. doi:10.1128/AEM.70.12.7545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bru D, Martin-Laurent F, Philippot L (2008) Quantification of the detrimental effect of a single primer-template mismatch by real-time PCR using the 16S rRNA gene as an example. Appl. Environ. Microbiol. 74:1660–1663. doi:10.1128/AEM.02403-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Suzuki MT, Giovannoni SJ (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62:625–630

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Reysenbach A-L, Giver LJ, Wickham GS, Pace NR (1992) Differential amplification of rRNA genes by polymerase chain reaction. Appl. Environ. Microbiol. 58:3417–3418

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ishii K, Fukui M (2001) Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR. Appl. Environ. Microbiol. 67:3753–3755. doi:10.1128/AEM.67.8.3753-3755.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chandler DP, Fredrickson JK, Brockman FJ (1997) Effect of PCR template concentration on the composition and distribution of total community 16S rDNA clone libraries. Mol. Ecol. 6:475–482

    Article  CAS  PubMed  Google Scholar 

  18. Acinas SG, Sarma-Rupavtarm R, Klepac-Ceraj V, Polz MF (2005) PCR-induced sequence artifacts and bias: insights from comparison of two 16S rRNA clone libraries constructed from the same sample. Appl. Environ. Microbiol. 71:8966–8969. doi:10.1128/AEM.71.12.8966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brankatschk R, Bodenhausen N, Zeyer J, Bürgmann H (2012) Simple absolute quantification method correcting for quantitative PCR efficiency variations for microbial community samples. Appl. Environ. Microbiol. 78:4481–4489. doi:10.1128/AEM.07878-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Töwe S, Kleineidam K, Schloter M (2010) Differences in amplification efficiency of standard curves in quantitative real-time PCR assays and consequences for gene quantification in environmental samples. J. Microbiol. Methods 82:338–341. doi:10.1016/j.mimet.2010.07.005

    Article  PubMed  Google Scholar 

  21. Demba Diallo M, Reinhold-Hurek B, Hurek T (2008) Evaluation of PCR primers for universal nifH gene targeting and for assessment of transcribed nifH pools in roots of Oryza longistaminata with and without low nitrogen input. FEMS Microbiol. Ecol. 65:220–228. doi:10.1111/j.1574-6941.2008.00545.x

    Article  PubMed  Google Scholar 

  22. Tan Z, Hurek T, Reinhold-Hurek B (2003) Effect of N-fertilization, plant genotype and environmental conditions on nifH gene pools in roots of rice. Environ. Microbiol. 5:1009–1015. doi:10.1046/j.1462-2920.2003.00491.x

    Article  CAS  PubMed  Google Scholar 

  23. Zehr J, Capone D (1996) Problems and promises of assaying the genetic potential for nitrogen fixation in the marine environment. Microb. Ecol. 32:263–281

    Article  CAS  PubMed  Google Scholar 

  24. Zehr JP, McReynolds LA (1989) Use of degenerate oligonucleotides for amplification of the nifH gene from the marine cyanobacterium Trichodesmium thiebautii. Appl. Environ. Microbiol. 55:2522–2526

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Mehta MP, Butterfield DA, Baross JA (2003) Phylogenetic diversity of nitrogenase (nifH) genes in deep-sea and hydrothermal vent environments of the Juan de Fuca Ridge. Appl. Environ. Microbiol. 69:960–970. doi:10.1128/AEM.69.2.960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Marusina AI, Boulygina ES, Kuznetsov BB, Tourova TP, Kravchenko IK, Gal’chenko VF (2001) A system of oligonucleotide primers for the amplification of nifH genes of different taxonomic groups of prokaryotes. Microbiology 70:73–78

    Article  CAS  Google Scholar 

  27. Lueders T, Friedrich MW (2003) Evaluation of PCR amplification bias by terminal restriction fragment length polymorphism analysis of small-subunit rRNA and mcrA genes by using defined template mixtures of methanogenic pure cultures and soil DNA extracts. Appl. Environ. Microbiol. 69:320–326. doi:10.1128/AEM.69.1.320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Owczarzy R, Tataurov AV, Wu Y, Manthey JA, McQuisten KA, Almabrazi HG, Pedersen KF, Lin Y, Garretson J, McEntaggart NO, Sailor CA, Dawson RB, Peek AS (2008) IDT SciTools: a suite for analysis and design of nucleic acid oligomers. Nucleic Acids Res. 36:163–169. doi:10.1093/nar/gkn198

    Article  Google Scholar 

  29. Poly F, Monrozier LJ, Bally R (2001) Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res. Microbiol. 152:95–103

    Article  CAS  PubMed  Google Scholar 

  30. Ueda T, Suga Y, Yahiro N, Matsuguchi T (1995) Remarkable N2-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. J. Bacteriol. 177:1414–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ando S, Goto M, Meunchang S, Thongra-ar P, Fujiwara T, Hayashi H, Yoneyama T (2005) Detection of nifH sequences in sugarcane (Saccharum officinarum L.) and pineapple (Ananas comosus [L.] Merr.) Soil Sci. Plant Nutr. 51:303–308

    Article  CAS  Google Scholar 

  32. Gaby JC, Buckley DH (2011) A global census of nitrogenase diversity. Environ. Microbiol. 13:1790–1799. doi:10.1111/j.1462-2920.2011.02488.x

    Article  CAS  PubMed  Google Scholar 

  33. Culman SW (2008) Soil microbial dynamics and associative nitrogen fixation in Kansan tallgrass prairies. Cornell University PhD dissertation.

  34. Balcells I, Cirera S, Busk PK (2011) Specific and sensitive quantitative RT-PCR of miRNAs with DNA primers. BMC Biotechnol. 11:1–11. doi:10.1186/1472-6750-11-70

    Article  Google Scholar 

  35. Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ. Microbiol. 5:539–554

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Cornell University NSF-IGERT program in Biogeochemistry and Environmental Biocomplexity, the NSF Microbial Observatories Program, grant number [MCB-0447586], and the Soil Processes Program of the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service, grant number [2005-35107-15266].

We would like to thank Dr. Sean Berthrong and Dr. Peter Bergholz for guidance with performing qPCR and Dr. Olena Vatamaniuk, Dr. Stephen Zinder, and Dr. Joel Kostka for use of their qPCR machines. We thank the staff of the USDA ARS Culture Collection for their service providing strains used in this work. We also thank those individuals who provided strains or DNA samples including Dr. Eric Triplett and Kelsey Gano, Dr. Jay Keasling, Dr. Aindrila Mukhopadhyay, and Eric Luning, Dr. Derek Lovley and Joy Ward, and Dr. David Benson and Ying Huang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel H. Buckley.

Electronic Supplementary Material

ESM 1

(PDF 71 kb)

Table S1

(PDF 241 kb)

Table S2

(PDF 62 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaby, J.C., Buckley, D.H. The Use of Degenerate Primers in qPCR Analysis of Functional Genes Can Cause Dramatic Quantification Bias as Revealed by Investigation of nifH Primer Performance. Microb Ecol 74, 701–708 (2017). https://doi.org/10.1007/s00248-017-0968-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-0968-0

Keywords

Navigation