Skip to main content
Log in

Spatial Distribution of Eukaryotic Communities Using High-Throughput Sequencing Along a Pollution Gradient in the Arsenic-Rich Creek Sediments of Carnoulès Mine, France

Microbial Ecology Aims and scope Submit manuscript

Abstract

Microscopic eukaryotes play a key role in ecosystem functioning, but their diversity remains largely unexplored in most environments. To advance our knowledge of eukaryotic microorganisms and the factors that structure their communities, high-throughput sequencing was used to characterize their diversity and spatial distribution along the pollution gradient of the acid mine drainage at Carnoulès (France). A total of 16,510 reads were retrieved leading to the identification of 323 OTUs after normalization. Phylogenetic analysis revealed a quite diverse eukaryotic community characterized by a total of eight high-level lineages including 37 classes. The majority of sequences were clustered in four main groups: Fungi, Stramenopiles, Alveolata and Viridiplantae. The Reigous sediments formed a succession of distinct ecosystems hosting contrasted eukaryotic communities whose structure appeared to be at least partially correlated with sediment mineralogy. The concentration of arsenic in the sediment was shown to be a significant factor driving the eukaryotic community structure along this continuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Motsi T, Rowson NA, Simmons MJH (2009) Adsorption of heavy metals from acid mine drainage by natural zeolite. Int J Miner Process 92(1-2):42–48

    Article  CAS  Google Scholar 

  2. Morin G, Juillot F, Casiot C et al (2003) Bacterial formation of tooeleite and mixed arsenic(III) or arsenic(V)-iron(III) gels in the Carnoulès acid mine drainage, France. A XANES, XRD, and SEM study. Environ Sci Technol 37(9):1705–1712

    Article  CAS  PubMed  Google Scholar 

  3. Johnson DB, Hallberg KB (2003) The microbiology of acidic mine waters. Res Microbiol 154(7):466–473

    Article  CAS  PubMed  Google Scholar 

  4. Johnson DB (2012) Geomicrobiology of extremely acidic subsurface environments. FEMS Microbiol Ecol 81(1):2–12

    Article  CAS  PubMed  Google Scholar 

  5. Volant A, Desoeuvre A, Casiot C et al (2012) Archaeal diversity: temporal variation in the arsenic-rich creek sediments of Carnoulès Mine, France. Extremophiles 16(4):645–657

    Article  CAS  PubMed  Google Scholar 

  6. Aguilera A (2013) Eukaryotic organisms in extreme acidic environments, the Río Tinto case. Life 3(3):363–374

    Article  PubMed  PubMed Central  Google Scholar 

  7. Amaral-Zettler LA, Zettler ER, Theroux SM, Palacios C, Aguilera A, Amils R (2011) Microbial community structure across the tree of life in the extreme Río Tinto. ISME J 5(1):42–50

    Article  PubMed  Google Scholar 

  8. Amils R, González-Toril E, Fernández-Remolar D et al (2007) Extreme environments as Mars terrestrial analogs: the Río Tinto case. Planet Space Sci 55(3):370–381

    Article  CAS  Google Scholar 

  9. Baker BJ, Tyson GW, Goosherst L, Banfield JF (2009) Insights into the diversity of eukaryotes in acid mine drainage biofilm communities. Appl Environ Microbiol 75(7):2192–2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Aguilera A, Manrubia SC, Gómez F, Rodríguez N, Amils R (2006) Eukaryotic community distribution and its relationship to water physicochemical parameters in an extreme acidic environment, Río Tinto (Southwestern Spain). Appl Environ Microbiol 72(8):5325–5330. doi:10.1128/aem.00513-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aguilera A, Zettler E, Gómez F, Amaral-Zettler L, Rodríguez N, Amils R (2007) Distribution and seasonal variability in the benthic eukaryotic community of Río Tinto (SW, Spain), an acidic, high metal extreme environment. Syst Appl Microbiol 30(7):531–546

    Article  CAS  PubMed  Google Scholar 

  12. Baker BJ, Lutz MA, Dawson SC, Bond PL, Banfield JF (2004) Metabolically active eukaryotic communities in extremely acidic mine drainage. Appl Environ Microbiol 70(10):6264–6271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McGinness S, Johnson DB (1992) Grazing of acidophilic bacteria by a flagellated protozoan. Microb Ecol 23(1):75–86

    Article  CAS  PubMed  Google Scholar 

  14. Qin J, Lehr CR, Yuan C, Le XC, McDermott TR, Rosen BP (2009) Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga. Proc Natl Acad Sci U S A 106(13):5213–5217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brake SS, Arango I, Hasiotis ST, Burch KR (2014) Spatial and temporal distribution and characteristics of eukaryote-dominated microbial biofilms in an acid mine drainage environment: implications for development of iron-rich stromatolites. Environ Earth Sci 72(8):2779–2796

    Article  CAS  Google Scholar 

  16. Casiot C, Morin G, Juillot F et al (2003) Bacterial immobilization and oxidation of arsenic in acid mine drainage (Carnoulès creek, France). Water Res 37(12):2929–2936

    Article  CAS  PubMed  Google Scholar 

  17. Egal M, Casiot C, Morin G, Elbaz P, Françoise, Cordier MA, Bruneel O (2010) An updated insight into the natural attenuation of As concentrations in Reigous Creek (southern France). Anglais 25(12):1949–1957

    CAS  Google Scholar 

  18. Bertin PN, Heinrich-Salmeron A, Pelletier E et al (2011) Metabolic diversity among main microorganisms inside an arsenic-rich ecosystem revealed by meta- and proteo-genomics. ISME J 5(11):1735–1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bruneel O, Duran R, Casiot C, Elbaz-Poulichet F, Personné JC (2006) Diversity of microorganisms in Fe-As-rich acid mine drainage waters of Carnoulès, France. Appl Environ Microbiol 72(1):551–556. doi:10.1128/aem.72.1.551-556.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bruneel O, Pascault N, Egal M et al (2008) Archaeal diversity in a Fe-As rich acid mine drainage at Carnoulès (France). Extremophiles 12(4):563–571

    Article  CAS  PubMed  Google Scholar 

  21. Bruneel O, Volant A, Gallien S et al (2011) Characterization of the active bacterial community involved in natural attenuation processes in arsenic-rich Creek sediments. Microb Ecol 61(4):793–810

    Article  PubMed  Google Scholar 

  22. Delavat F, Lett M-C, Lièvremont D (2013) Yeast and bacterial diversity along a transect in an acidic, As-Fe rich environment revealed by cultural approaches. Sci Total Environ 463–464:823–828

    Article  PubMed  Google Scholar 

  23. Casiot C, Bruneel O, Personne JC, Leblanc M, Elbaz-Poulichet F (2004) Arsenic oxidation and bioaccumulation by the acidophilic protozoan, Euglena mutabilis, in acid mine drainage (Carnoulès, France). Sci Total Environ 320(2-3):259–267

    Article  CAS  PubMed  Google Scholar 

  24. Halter D, Goulhen-Chollet F, Gallien S et al (2012) In situ proteo-metabolomics reveals metabolite secretion by the acid mine drainage bio-indicator, Euglena mutabilis. ISME J 6(7):1391–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brake SS, Dannelly HK, Connors KA (2001) Controls on the nature and distribution of an alga in coal mine-waste environments and its potential impact on water quality. Environ Geol 40(4):458–469

    Article  CAS  Google Scholar 

  26. López-García P, Philippe H, Gail F, Moreira D (2003) Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge. Proc Natl Acad Sci U S A 100(2):697–702

    Article  PubMed  PubMed Central  Google Scholar 

  27. Monchy S, Sanciu G, Jobard M et al (2011) Exploring and quantifying fungal diversity in freshwater lake ecosystems using rDNA cloning/sequencing and SSU tag pyrosequencing. Environ Microbiol 13(6):1433–1453

    Article  PubMed  Google Scholar 

  28. Hohmann C, Morin G, Ona-Nguema G, Guigner J-M, Brown GE Jr, Kappler A (2011) Molecular-level modes of As binding to Fe(III) (oxyhydr)oxides precipitated by the anaerobic nitrate-reducing Fe(II)-oxidizing Acidovorax sp. strain BoFeN1. Geochim Cosmochim Acta 75(17):4699–4712

    Article  CAS  Google Scholar 

  29. Ona-Nguema G, Morin G, Juillot F, Calas G, Brown GE Jr (2005) EXAFS analysis of arsenite adsorption onto two-line ferrihydrite, hematite, goethite, and lepidocrocite. Environ Sci Technol 39(23):9147–9155

    Article  CAS  PubMed  Google Scholar 

  30. Maillot F, Morin G, Juillot F et al (2013) Structure and reactivity of As(III)- and As(V)-rich schwertmannites and amorphous ferric arsenate sulfate from the Carnoulès acid mine drainage, France: comparison with biotic and abiotic model compounds and implications for As remediation. Geochim Cosmochim Acta 104:310–329

    Article  CAS  Google Scholar 

  31. Díez B, Pedrós-Alió C, Marsh TL, Massana R (2001) Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl Environ Microbiol 67(7):2942–2951

    Article  PubMed  PubMed Central  Google Scholar 

  32. Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541. doi:10.1128/aem.01541-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48(3):443–453

    Article  CAS  PubMed  Google Scholar 

  34. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16):2194–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huse SM, Welch DM, Morrison HG, Sogin ML (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ Microbiol 12(7):1889–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Behnke A, Engel M, Christen R, Nebel M, Klein RR, Stoeck T (2011) Depicting more accurate pictures of protistan community complexity using pyrosequencing of hypervariable SSU rRNA gene regions. Environ Microbiol 13(2):340–349

    Article  CAS  PubMed  Google Scholar 

  37. Guillou L, Bachar D, Audic S et al (2013) The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res 41(D1):D597–D604

    Article  CAS  PubMed  Google Scholar 

  38. R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org. edn., Vienna, Austria

  39. Aliaga Goltsman DS, Comolli LR, Thomas BC, Banfield JF (2015) Community transcriptomics reveals unexpected high microbial diversity in acidophilic biofilm communities. ISME J 9(4):1014–1023

    Article  CAS  PubMed  Google Scholar 

  40. Amaral-Zettler LA (2013) Eukaryotic diversity at pH extremes. Front Microbiol 3:441

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zirnstein I, Arnold T, Krawczyk-Barsch E, Jenk U, Bernhard G, Roske I (2012) Eukaryotic life in biofilms formed in a uranium mine. Microbiologyopen 1(2):83–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Amaral-Zettler LA, Gomez F, Zettler E, Keenan BG, Amils R, Sogin ML (2002) Microbiology: eukaryotic diversity in Spain’s river of fire. Nature 417(6885):137–137

    Article  CAS  PubMed  Google Scholar 

  43. Amaral-Zettler LA, Messerli MA, Laatsch AD, Smith PJ, Sogin ML (2003) From genes to genomes: beyond biodiversity in Spain’s Río Tinto. Biol Bull 204(2):205–209

    Article  CAS  PubMed  Google Scholar 

  44. Caron DA, Countway PD, Brown MV (2004) The growing contributions of molecular biology and immunology to protistan ecology: molecular signatures as ecological tools. J Eukaryot Microbiol 51(1):38–48

    Article  CAS  PubMed  Google Scholar 

  45. Stoeck T, Hayward B, Taylor GT, Varela R, Epstein SS (2006) A multiple PCR-primer approach to access the microeukaryotic diversity in environmental samples. Protist 157(1):31–43

    Article  CAS  PubMed  Google Scholar 

  46. Casamayor EO, Massana R, Benlloch S et al (2002) Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ Microbiol 4(6):338–348

    Article  PubMed  Google Scholar 

  47. González-Toril E, Aguilera A, Souza-Egipsy V, Lopez Pamo E, Sanchez Espana J, Amils R (2011) Geomicrobiology of La Zarza-Perrunal acid mine effluent (Iberian Pyritic Belt, Spain). Appl Environ Microbiol 77(8):2685–2694

    Article  PubMed  PubMed Central  Google Scholar 

  48. Siefert J, Mutz M (2001) Processing of leaf litter in acid waters of the post-mining landscape in Lusatia, Germany. Ecol Eng 17(2-3):297–306

    Article  Google Scholar 

  49. Das BK, Roy A, Koschorreck M, Mandal SM, Wendt-Potthoff K, Bhattacharya J (2009) Occurrence and role of algae and fungi in acid mine drainage environment with special reference to metals and sulfate immobilization. Water Res 43(4):883–894

    Article  CAS  PubMed  Google Scholar 

  50. Zafar S, Aqil F, Ahmad I (2007) Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresour Technol 98(13):2557–2561

    Article  CAS  PubMed  Google Scholar 

  51. Ji LY, Zhang WW, Yu D, Cao YR, Xu H (2012) Effect of heavy metal-solubilizing microorganisms on zinc and cadmium extractions from heavy metal contaminated soil with Tricholoma lobynsis. World J Microbiol Biotechnol 28(1):293–301

    Article  CAS  PubMed  Google Scholar 

  52. Purchase D, Scholes LN, Revitt DM, Shutes RB (2009) Effects of temperature on metal tolerance and the accumulation of Zn and Pb by metal-tolerant fungi isolated from urban runoff treatment wetlands. J Appl Microbiol 106(4):1163–1174

    Article  CAS  PubMed  Google Scholar 

  53. Rajpert L, Sklodowska A, Matlakowska R (2013) Biotransformation of copper from Kupferschiefer black shale (Fore-Sudetic Monocline, Poland) by yeast Rhodotorula mucilaginosa LM9. Chemosphere 91(9):1257–1265

    Article  CAS  PubMed  Google Scholar 

  54. Fournier D, Lemieux R, Couillard D (1998) Essential interactions between Thiobacillus ferrooxidans and heterotrophic microorganisms during a wastewater sludge bioleaching process. Environ Pollut 101(2):303–309

    Article  CAS  PubMed  Google Scholar 

  55. Vidal FV, Vidal VMV (1980) Arsenic metabolism in marine bacteria and yeast. Mar Biol 60(1):1–7. doi:10.1007/bf00395600

    Article  CAS  Google Scholar 

  56. Johnson DB, Rang L (1993) Effects of acidophilic protozoa on populations of metal-mobilizing bacteria during the leaching of pyritic coal. J Gen Microbiol 139(7):1417–1423. doi:10.1099/00221287-139-7-1417

    Article  CAS  Google Scholar 

  57. Schmidtke A, Bell EM, Weithoff G (2006) Potential grazing impact of the mixotrophic flagellate Ochromonas sp. (Chrysophyceae) on bacteria in an extremely acidic lake. J Plankton Res 28(11):991–1001. doi:10.1093/plankt/fbl034

    Article  CAS  Google Scholar 

  58. Héry M, Casiot C, Resongles E et al (2014) Release of arsenite, arsenate and methyl-arsenic species from streambed sediment affected by acid mine drainage: a microcosm study. Environ Chem 11(5):514–524. doi:10.1071/EN13225

    Article  Google Scholar 

  59. Desoeuvre A, Casiot C, Hery M (2015) Diversity and distribution of arsenic-related genes along a pollution gradient in a river affected by acid mine drainage. Microb Ecol 71(3):672–685

    Article  PubMed  Google Scholar 

  60. Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 66(2):250–271. doi:10.1128/mmbr.66.2.250-271.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Egal M, Casiot C, Morin G et al (2009) Kinetic control on the formation of tooeleite, schwertmannite and jarosite by Acidithiobacillus ferrooxidans strains in an As(III)-rich acid mine water. Chem Geol 265(3-4):432–441

    Article  CAS  Google Scholar 

  62. Bruneel O, Personne JC, Casiot C et al (2003) Mediation of arsenic oxidation by Thiomonas sp. in acid-mine drainage (Carnoulès, France). J Appl Microbiol 95(3):492–499

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was financed by the “Observatoire de Recherche Méditerranéen en Environnement” (OSU-OREME). Aurélie Volant was supported by a grant from the French Ministry of Education and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Volant.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1: Table S1

Physical-ochemical characteristics of the water body (mg L−1) measured directly above the sediment at the sampling sites of Reigous Creek. (DOCX 14 kb)

ESM 2: Figure S1

X-ray powder diffraction patterns of selected sediment samples collected along Reigous Creek (To: tooeleite; Schw: schwertmannite; Qz: quartz; Mi: micas). (TIF 382 kb)

ESM 3: Figure S2

XANES spectra of selected sediment samples. Arsenic oxidation states were determined using the linear combination fit of As(III) and As(V) ferric hydroxides spectra. Precision is ±2 %. (PDF 726 kb)

ESM 4: Figure S3

Extended X-ray absorption fine structure (EXAFS) data at the As K-edge of selected sediment samples. Experimental spectra were interpreted using linear composition fitting (LCF) using 3 model compound spectra: biogenic amorphous ferric arsenate hydroxysulfate from Thiomonas sp. strain B2 (Tm As(V)-am); arsenic(V) sorbed onto synthetic schwertmannite (As(V)/schw); and arsenic(III) sorbed onto biogenic schwertmannite from Acidithiobacillus ferrooxidans strain CC1(Af As(III)/schw). See [2, 30, 61] for details on these biogenic and abiotic mineral model compounds. As(III) proportions are underestimated with respect to XANES fit results because of the lower sensitivity of EXAFS to redox composition. (PDF 826 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volant, A., Héry, M., Desoeuvre, A. et al. Spatial Distribution of Eukaryotic Communities Using High-Throughput Sequencing Along a Pollution Gradient in the Arsenic-Rich Creek Sediments of Carnoulès Mine, France. Microb Ecol 72, 608–620 (2016). https://doi.org/10.1007/s00248-016-0826-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0826-5

Keywords

Navigation