Skip to main content

Advertisement

Log in

Functional Responses of Bacterioplankton Diversity and Metabolism to Experimental Bottom-Up and Top-Down Forcings

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

We conducted an experimental approach using microcosms to simultaneously examine the functional response of natural freshwater bacterial assemblages to the impact of resources (nutrients) and top-down factors (viruses and grazers) on bacterial physiological state and their community structure. Addition of organic and inorganic nutrients led to the proliferation of high nucleic acid content bacterial cells accompanied by high bacterial growth efficiency (considered as proxy of bacterial carbon metabolism) estimates, suggesting that this subgroup represented the most active fraction of bacterial community and had a high capacity to incorporate carbon into its biomass. However, their rapid growth induced the pressure of viral lytic infection which led to their lysis toward the end of the experiment. In microcosms with flagellates plus viruses, and with viruses alone, the selective removal of metabolically active high nucleic acid cells through viral lysis benefitted the less active low nucleic acid content cells, perhaps via the use of lysis products for its growth and survival. Changes in bacterial physiological state in microcosms were reflected in their community structure which was examined using 16S ribosomal RNA (rRNA) gene sequencing by Illumina’s Miseq platform. Chao estimator and Shannon diversity index values suggested that bacterial species richness was highest in the presence of both the top-down factors, indicating a tighter control of bacterioplankton dominants within a relatively stable bacterial community. The increase in bacterial metabolism with nutrient addition followed by subsequent lysis of bacterial dominants indicate that both resources and top-down factors work in concert for the sustenance of stable bacterial communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Azam F, Malfatti F (2007) Microbial structuring of marine ecosystems. Nat Rev Microbiol 5:782–791

    Article  CAS  PubMed  Google Scholar 

  2. Bouvier T, del Giorgio PA (2007) Key role of selective viral-induced mortality in determining marine bacterial community composition. Environ Microbiol 9:287–297

    Article  CAS  PubMed  Google Scholar 

  3. Graham EB et al (2016) Microbes as engines of ecosystem function: when does community structure enhance prediction of ecosystem processes? Front Microbiol 7:214

    Article  PubMed  PubMed Central  Google Scholar 

  4. Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28:127–181

    Article  CAS  PubMed  Google Scholar 

  5. Sime-Ngando T (2014) Environmental bacteriophages: viruses of microbes in aquatic systems. Front Microbiol 5:1–14

    Article  Google Scholar 

  6. Thingstad TF (2000) Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol Oceanogr 45:1320–1328

    Article  Google Scholar 

  7. Zhang R, Weinbauer MG, Qian PY (2007) Viruses and flagellate sustain apparent richness and reduce biomass accumulation of bacterioplankton in coastal marine waters. Environ Microbiol 9:3008–3018

    Article  CAS  PubMed  Google Scholar 

  8. Berdjeb L, Pollet T, Domaizon I, Jacquet S (2011) Effect of grazers and viruses on bacterial community structure and production in two contrasting trophic lakes. BMC Microbiol 11:88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jardillier L, Boucher D, Personnic S, Jacquet S, Thénot A, Sargos D, Amblard C, Debroas D (2005) Relative importance of nutrients and mortality factors on prokaryotic community composition in two lakes of different trophic status: microcosm experiments. FEMS Microb Ecol 53:429–443

    Article  CAS  Google Scholar 

  10. Xu J, Jing H, Sun M, Harrison PJ, Liu H (2013) Regulation of bacterial metabolic activity by dissolved organic carbon and viruses. J Geophys Res: Biogeosciences 118:1573–1583

    Article  CAS  Google Scholar 

  11. Pradeep Ram AS, Colombet J, Perriere F, Thouvenot A, Sime-Ngando T (2015) Viral and grazer regulation of prokaryotic growth efficiency in temperate freshwater pelagic environments. FEMS Microb Ecol 91:1–12

    CAS  Google Scholar 

  12. Birtel J, Walser J-C, Pinchon S, Bürgmann H, Matthews B (2015) Estimating bacterial diversity for ecological studies: methods, metrics and assumptions. PLoS One 10:e0125356

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pradeep Ram AS, Rasconi S, Jobard M, Palesse S, Colombet J, Sime-Ngando T (2011) High lytic infection rates but low abundances of prokaryote viruses in a humic lake (Vassiviére, Massif Central, France). Appl Environ Microbiol 77:5610–5618

    Article  PubMed Central  Google Scholar 

  14. Brussaard C, Payet JP, Winter C, Weinbauer MG (2010) Quantification of aquatic viruses by flow cytometry. In: Wilhelm SW, Weinbauer MG and Suttle C (eds). Manual of Aquatic Viral Ecology, Chapter 11, pp 102–109, ASLO

  15. del Giorgio PA, Gasol JM. (2008). Physiological structure and single-cell activity in marine bacterioplankton. In:Microb Ecol Oceans, John Wiley & Sons, Inc., pp. 243–298

  16. Weinbauer MG, Winter C, Hofle MG (2002) Reconsidering transmission electron microscopy based estimates of viral infection of bacterioplankton using conversion factors derived from natural communities. Aquat Microb Ecol 27:103–110

    Article  Google Scholar 

  17. Liu Z, Lozupone C, Hamady M, Bushman FD, Knight R (2007) Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids Res 35:e120

    Article  PubMed  PubMed Central  Google Scholar 

  18. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79(17):5112–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA, a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16SrRNA-based studies. PloS One 6:e27310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145

    Article  CAS  PubMed  Google Scholar 

  24. Lønborg C, Søndergaard M (2009) Microbial availability and degradation of dissolved organic carbon and nitrogen in two coastal areas. Estuar Coast Shelf Sci 81:513–520

    Article  Google Scholar 

  25. Mahaffey C, Benitez-Nelson CR, Bidigare RR, Rii Y, Karl DM (2008) Nitrogen dynamics within a wind-driven eddy. Deep Sea Res II 55:1398–1411

    Article  Google Scholar 

  26. Wetzel RG, Likens GE (1995) Limnological analysis, 2nd edn. Springer-Verlag, New York

    Google Scholar 

  27. Auguet JC, Montanié H, Hartmann HJ, Lebaron P, Casamayor EO, Catala P, Delmas D (2009) Potential effect of freshwater virus on the structure and activity of bacterial communities in the Marennes-Oléron Bay (France). Microb Ecol 57:295–306

    Article  CAS  PubMed  Google Scholar 

  28. Montanié H, De Crignis MG, Lavaud J (2015) Viral impact on prokaryotic and microalgal activities in the microphytobenthic biofilm of an intertidal mudflat (French Atlantic Coast). Front Microbiol 6:1214

    Article  PubMed  PubMed Central  Google Scholar 

  29. Agis M, Granda A, Dolan JR (2007) A cautionary note: examples of possible microbial community dynamics in dilution grazing experiments. J Exp Mar Biol Ecol 341:176–183

    Article  Google Scholar 

  30. Sherr EB, Sherr BF, Sigmon CT (1999) Activity of marine bacteria under incubated and in situ conditions. Aquat Microb Ecol 20:213–223

    Article  Google Scholar 

  31. Pradeep Ram AS, Sime-Ngando (2014) Distinctive patterns in prokaryotic community composition in response to viral lysis and flagellate grazing in freshwater microcosms. Freshw Biol 59:1945–1955

    Article  CAS  Google Scholar 

  32. Lebaron P, Servais P, Agogué H, Courties C, Joux F (2001) Does the high nucleic acid content of individual bacterial cells allow us to discriminate between active cells and inactive cells in aquatic systems? Appl Environ Microbiol 67:1775–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Morán XAG, Ducklow HW, Erickson M (2011) Single-cell physiological structure and growth rates of heterotrophic bacteria in a temperate estuary (Waquoit Bay, Massachusetts). Limnol Oceanogr 56:37–48

    Article  Google Scholar 

  34. Maurice CF, Bouvier T, Comte J, Guillemette F, del Giorgio PA (2010) Seasonal variations of phage life strategies and bacterial physiological states in three northern temperate lakes. Environ Microbiol 12:628–641

    Article  CAS  PubMed  Google Scholar 

  35. Pradeep Ram AS, Palesse S, Colombet J, Thouvenot A, Sime-Ngando T (2014) The relative importance of viral lysis and nanoflagellate grazing for prokaryotic mortality in temperate lakes. Freshw Biol 59:300–311

    Article  Google Scholar 

  36. Morán XAG, Bode A, Suárez LA, Nogueira E (2007) Assessing the relevance of nucleic acid content as an indicator of marine bacterial activity. Aquat Microb Ecol 46:141–152

    Article  Google Scholar 

  37. Cuevas LA, Egge JK, Thingstad TF, Topper B (2011) Organic carbon and nutrient mineral limitation of oxygen consumption, bacterial growth and efficiency in the Norwegian Sea. Polar Biol 34:871–882

    Article  Google Scholar 

  38. Longnecker K, Sherr BF, Sherr EB (2005) Activity and phylogenetic diversity of high and low nucleic acid content, and ETS-active, bacterial cells in an upwelling ecosystem. Appl Environ Microbiol 71:7737–7749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tadonléké RD, Planas D, Lucotte A (2005) Microbial food webs in boreal humic lakes and reservoirs: ciliates as a major factor related to the dynamics of the most active bacteria. Microb Ecol 49:325–341

    Article  PubMed  Google Scholar 

  40. Motegi C, Nagata T, Miki T, Weinbauer MG, Legendre L, Rassoulzadegan F (2009) Viral control of bacterial growth efficiency in marine pelagic environments. Limnol Oceanogr 54:1901–1910

    Article  CAS  Google Scholar 

  41. Pernthaler J (2005) Predation of prokaryotes in the water column and its ecological implications. Nat Rev Microbiol 3:537–546

    Article  CAS  PubMed  Google Scholar 

  42. Bonilla-Findji O, Herndl G, Gattuso JP, Weinbauer MG (2009) Viral and flagellate control of prokaryotic production and community structure in offshore Mediterranean waters. Appl Environ Microbiol 75:4801–4812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Campbell B, Yu L, Heidelberg JF, Kirchman DL (2011) Activity of abundant and rare bacteria in a coastal ocean. Proc Natl Acad Sci U S A 108:12776–12781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fuhrman JA, Schwalbach MS (2003) Viral influence on aquatic bacterial communities. The Biol Bull 204:192–195

    Article  CAS  PubMed  Google Scholar 

  45. Winter C, Bouvier T, Weinbauer MG, Thingstad TF (2010) Trade-offs between competition and defense specialists among unicellular planktonic organisms: the “Killing the Winner” hypothesis revisited. Microbiol Mol Biol Rev 74:42–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Thingstad TF, Lignell R (1997) Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat Microb Ecol 13:19–27

    Article  Google Scholar 

  47. Motegi C, Nagata T (2009) Addition of monomeric and polymeric organic substrates alleviates lytic pressure on bacterial communities in coastal seawaters. Aquat Microb Ecol 57:343–350

    Article  Google Scholar 

  48. Motegi C, Nagata T (2007) Enhancement of viral production by addition of nitrogen or nitrogen plus carbon in subtropical surface waters of the South Pacific. Aquat Microb Ecol 48:27–34

    Article  Google Scholar 

  49. Lindström ES, Kamst-Van Agtervald MP, Zwart G (2005) Distribution of typical freshwater bacterial groups is associated with pH, temperature, and lake water retention time. Appl Environ Microbiol 71:8201–8206

    Article  PubMed  PubMed Central  Google Scholar 

  50. Newton RJ, Jones SE, Eiler A, Mcmahon KD, Bertilsson S (2011) A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 75:14–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Šimek K, Weinbauer MG, Hornak K, Jezbera J, Nedoma J, Dolan JR (2007) Grazer and virus induced mortality of bacterioplankton accelerates development of Flectobacillus populations in a freshwater community. Environ Microbiol 9:789–800

    Article  PubMed  Google Scholar 

  52. Hornák K, Jezbera J, Šimek K (2008) Effects of a Microcystis aeruginosa bloom and bacterivory on bacterial abundance and activity in a eutrophic reservoir. Aquat Microb Ecol 52:107–117

    Article  Google Scholar 

  53. Warnecke F, Sommaruga R, Sekar R, Hofer JS, Pernthaler J (2005) Abundances, identity and grow state of Actinobacteria in mountain lakes of different UV transparency. Appl Environ Microbiol 71:5551–5559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pernthaler A, Pernthaler J, Eilers H, Amann R (2001) Growth patterns of two marine isolates: adaptations to substrate patchiness. Appl Environ Microbiol 67:4077–4083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Šimek K, Nedoma J, Penthaler J, Posch T, Dolan JR (2002) Altering the balance between bacterial production and protistan bacterivory triggers shifts in freshwater bacterial community composition. Antonie Van Leeuwenhoek 81:453–463

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

JK was supported by a postdoctoral fellowship from the Université Blaise Pascal, Clermont-Ferrand. SC was supported by a student fellowship from Université Blaise Pascal. We thank F. Perriere for her technical assistance in nutrient analysis. We appreciate three anonymous reviewers for their time, effort, and valuable contributions to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Pradeep Ram.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 319 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradeep Ram, A.S., Chaibi-Slouma, S., Keshri, J. et al. Functional Responses of Bacterioplankton Diversity and Metabolism to Experimental Bottom-Up and Top-Down Forcings. Microb Ecol 72, 347–358 (2016). https://doi.org/10.1007/s00248-016-0782-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0782-0

Keywords

Navigation