Skip to main content
Log in

Analysis of Dissolved Organic Nutrients in the Interstitial Water of Natural Biofilms

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

In biofilms, the matrix of extracellular polymeric substances (EPSs) retains water in the interstitial region of the EPS. This interstitial water is the ambient environment for microorganisms in the biofilms. The nutrient condition in the interstitial water may affect microbial activity in the biofilms. In the present study, we measured the concentrations of dissolved organic nutrients, i.e., saccharides and proteins, contained in the interstitial water of biofilms formed on the stones. We also analyzed the molecular weight distribution, chemical species, and availability to bacteria of some saccharides in the interstitial water. Colorimetric assays showed that the concentrations of saccharides and proteins in the biofilm interstitial water were significantly higher (ca. 750 times) than those in the surrounding lake waters (p < 0.05). Chromatographic analyses demonstrated that the saccharides in the interstitial waters were mainly of low molecular-weight saccharides such as glucose and maltose, while proteins in the interstitial water were high molecular-weight proteins (over 7000 Da). Bacterial growth and production of EPS occurred simultaneously with the decrease in the low molecular-weight saccharide concentrations when a small portion of biofilm suspension was inoculated to the collected interstitial water, suggesting that the dissolved saccharides in the interstitial water support bacterial growth and formation of biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Araya R, Tani K, Takagi T, Yamaguchi N, Nasu M (2003) Bacterial activity and community composition in stream water and biofilm from an urban river determined by fluorescent in situ hybridization and DGGE analysis. FEMS Microbol Ecol 43:111–119

    Article  CAS  Google Scholar 

  2. Artigas J, Fund K, Kirchen S, Morin S, Obst U, Romaní AM, Sabater S, Schwartz T (2012) Patterns of biofilm formation in two streams from different bioclimatic regions: analysis of microbial community structure and metabolism. Hydrobiologia 695:83–96

    Article  CAS  Google Scholar 

  3. Bayles KW (2007) The biological role of death and lysis in biofilm development. Nature Rev Microbiol 5:721–726

    Article  CAS  Google Scholar 

  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  5. Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie T (1987) Bacterial biofilm in nature and disease. Ann Rev Microbiol 41:435–464

    Article  CAS  Google Scholar 

  6. Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    CAS  PubMed  Google Scholar 

  7. Flemming HC (2011) The perfect slime. Coll Surf B Biointerfaces 86:251–259

    Article  CAS  Google Scholar 

  8. Hallebust JA (1974) Extracellular products. P.838-863. In W.D. Stewart (ed.): Algal physiology and biochemistry. Univ. California Press

  9. Hayakawa K (2004) Seasonal variations and dynamics of dissolved carbohydrates in Lake Biwa. Org Geochem 35:169–179

    Article  CAS  Google Scholar 

  10. Henne K, Kahlisch L, Brettar I, Höfle MG (2012) Analysis of structure and composition of bacterial core communities in mature drinking water biofilms and bulk water of a citywide network in Germany. Appl Environ Microbiol 78:3530–3538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hiraki A, Tsuchiya Y, Fukuda Y, Yamada T, Kurniawan A, Morisaki H (2009) Analysis of how a biofilm forms on the surface of the aquatic macrophyte Phragmites australis. Microbes Environ 24:265–272

    Article  PubMed  Google Scholar 

  12. Jones PR, Cottrell MT, Kirchman DL, Dexter SC (2007) Bacterial community structure of biofilms on artificial surfaces in an estuary. Microb Ecol 53:153–162

    Article  PubMed  Google Scholar 

  13. Jüttner F, Matuschek T (1978) The release of low molecular weight compounds by the phytoplankton in an eutrophic lake. Water Res 12:251–255

    Article  Google Scholar 

  14. Kirchman DL, Dittel AI, Findlay SEG, Fischer D (2004) Changes in bacterial activity and community structure in response to dissolved organic matter in the Hudson River, New York. Aquat Microb Ecol 35:243–257

    Article  Google Scholar 

  15. Kochert G (1978) Carbohydrate determination by the phenol–sulfuric acid method. In: Craigie JS, Hellebust JA (eds) Handbook of phycological methods. physiological and biochemical methods. Cambridge Univ. Press, Cambridge, pp 95–97

    Google Scholar 

  16. Kurniawan A, Yamamoto T, Tsuchiya Y, Morisaki H (2012) Analysis of the ion adsorption-desorption characteristics of biofilm matrices. Microbes Environ 27:399–406

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kurniawan A, Tsuchiya Y, Eda S, Morisaki H (2015) Characterization of the internal ion environment of biofilms based on charge density and shape of ion. Coll Surf B Biointerfaces 136:22–26

    Article  CAS  Google Scholar 

  18. Meon B, Jüttner F (1999) Concentrations and dynamics of free mono- and oligosaccharides in a shallow eutrophic lake measured by thermospray mass spectrometry. Aquat Microb Ecol 16:281–293

    Article  Google Scholar 

  19. Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural water. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  20. Myszka K, Czaczyk K (2009) Characterization of adhesive exopolysaccharide (EPS) produced by Pseudomonas aeruginosa under starvation conditions. Curr Microbiol 58:541–546

    Article  CAS  PubMed  Google Scholar 

  21. Okabe S, Oshiki M, Kamagata Y et al (2010) A great leap forward in microbial ecology. Microbes Environ 25:230–240

    Article  PubMed  Google Scholar 

  22. Pérez MT, Sommaruga R (2006) Differential effect of algal- and soil-derived dissolved organic matter on alpine lake bacterial community composition and activity. Limnol Oceanogr 51:2527–2537

    Article  Google Scholar 

  23. Pierre G, Graber M, Rafiliposon BA, Dupuy C, Orvain F, De Crignis M, Maugard T (2012) Biochemical composition and changes of extracellular polysaccharides (ECPS) produced during microphytobenthic biofilm development (Marennes-Oléron, France). Microb Ecol 63:157–169

    Article  CAS  PubMed  Google Scholar 

  24. Ras M, Lefebvre D, Derlon N, Paul E, Girbal-Neuhauser E (2011) Extracellular polymeric substances diversity of biofilms grown under contrasted environmental conditions. Water Res 45:1529–1538

    Article  CAS  PubMed  Google Scholar 

  25. Romaní AM, Fund K, Artigas J, Schwartz T, Sabater S, Obst U (2008) Relevance of polymeric matrix enzymes during biofilm formation. Microb Ecol 56:427–436

    Article  PubMed  Google Scholar 

  26. Romaní AM, Artigas J, Ylla I (2012) Extracellular enzymes in aquatic biofilms: microbial interactions vs water quality effects in the use of organic matter. In: Lewis G, Lear G (eds) Microbial Biofilms. Current Research and Applications, Caister, pp 153–174

    Google Scholar 

  27. Sagi T (1966) Determination of ammonium in sea water by the indophenol method and its application to the coastal and off-shore waters. Limnol Oceanogr 13:440–447

    Google Scholar 

  28. Schmitt J, Flemming HC (1999) Water binding in biofilms. Wat Sci Tech 39:77–82

    Article  CAS  Google Scholar 

  29. Sepers AB (1977) The utilization of dissolved organic compounds in aquatic environments. Hydrobioiologia 52:39–54

    Article  CAS  Google Scholar 

  30. Souter NJ, Walter M, Wen L (2012) Weir pool surcharge and a corresponding increase in algal biofilm community diversity in the Lower River Murray, South Australia. River Res Appl 28:1853–1857

    Article  Google Scholar 

  31. Tranvik LJ, Jørgensen NOG (1995) Colloidal and dissolved organic matter in lake water: carbohydrate and amino acid composition, and ability to support bacterial growth. Biogeochemistry 30:77–97

    Article  CAS  Google Scholar 

  32. Tsuchiya Y, Ikenaga M, Kurniawan A, Hiraki A, Arakawa T, Kusakabe R, Morisaki H (2009) Nutrient-rich microhabitats within biofilms are synchronized with the external environment. Microbes Environ 24:43–51

    Article  PubMed  Google Scholar 

  33. Tsuchiya Y, Hiraki A, Kiriyama C, Arakawa T, Kusakabe R, Morisaki H (2011) Seasonal change of bacterial community structure in a biofilm formed on the surface of the aquatic macrophyte Phragmites australis. Microbes Environ 26:113–119

    Article  PubMed  Google Scholar 

  34. Vijayabaskar P, Babinastarlin S, Shankar T, Sivakumar T, Anandapandian KTK (2011) Quantification and characterization of exopolysaccharides from Bacillus subtilis (MTCC 121). Adv Biolog Res 5:71–76

    CAS  Google Scholar 

  35. Vogt M, Flemming HC, Veeman WS (2000) Diffusion in Pseudomonas aeruginosa biofilms: a pulsed field gradient NMR study. J Biotechnol 77:137–146

    Article  CAS  PubMed  Google Scholar 

  36. Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14:2535–2554

    Article  CAS  PubMed  Google Scholar 

  37. Wang ZW, Liu Y, Tay JH (2007) Biodegradability of extracellular polymeric substances produced by aerobic granules. Appl Microbiol Biotechnol 74:462–466

    Article  CAS  PubMed  Google Scholar 

  38. Wood ED, Armstrong FAJ, Richards FA (1967) Determination of nitrate in seawater by cadmium-copper reduction to nitrite. J Mar Biol Ass UK 47:23–31

    Article  CAS  Google Scholar 

  39. Wright RR, Hobbie JE (1966) Use of glucose and acetate by bacteria and algae in aquatic ecosystems. Ecol 47:447–464

    Article  CAS  Google Scholar 

  40. Yamamoto M, Murai H, Takeda A, Okunishi S, Morisaki H (2005) Bacterial flora of the biofilm formed on the submerged surface of the reed Phragmites australis. Microbes Environ 20:14–24

    Article  Google Scholar 

  41. Ylla I, Borrego C, Romaní AM, Sabater S (2009) Availability of glucose and light modulates the structure and function of a microbial biofilm. FEMS Microbiol Ecol 69:27–42

    Article  CAS  PubMed  Google Scholar 

  42. Ylla I, Romaní AM, Sabater S (2012) Labile and recalcitrant organic matter utilization by river biofilm under increasing water temperature. Microb Ecol 64:593–604

    Article  CAS  PubMed  Google Scholar 

  43. Zhang XQ, Bishop PL, Kupferle MJ (1998) Measurement of polysaccharides and proteins in biofilm extracellular polymers. Water Sci Technol 37:345–348

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr. Shiro Kitahara and Ms. Mei Hanada, College of Life Science, Ritsumeikan University, for their help in the sampling of biofilms and analyzing of the data. The authors have no conflict of interest directly relevant to the content of this manuscript.

This work was partly supported by JSPS KAKENHI Grant Number 15 K12232.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisao Morisaki.

Additional information

Yuki Tsuchiya and Shima Eda contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 86 kb)

ESM 2

(PDF 48 kb)

ESM 3

(PDF 71 kb)

ESM 4

(PDF 63 kb)

ESM 5

(PDF 65 kb)

ESM 6

(PDF 9692 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuchiya, Y., Eda, S., Kiriyama, C. et al. Analysis of Dissolved Organic Nutrients in the Interstitial Water of Natural Biofilms. Microb Ecol 72, 85–95 (2016). https://doi.org/10.1007/s00248-016-0749-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0749-1

Keywords

Navigation