Skip to main content
Log in

Pulsed 13C2-Acetate Protein-SIP Unveils Epsilonproteobacteria as Dominant Acetate Utilizers in a Sulfate-Reducing Microbial Community Mineralizing Benzene

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

In a benzene-degrading and sulfate-reducing syntrophic consortium, a clostridium affiliated to the genus Pelotomaculum was previously described to ferment benzene while various sulfate-reducing Deltaproteobacteria and a member of the Epsilonproteobacteria were supposed to utilize acetate and hydrogen as key metabolites derived from benzene fermentation. However, the acetate utilization network within this community was not yet unveiled. In this study, we performed a pulsed 13C2-acetate protein stable isotope probing (protein-SIP) approach continuously spiking low amounts of acetate (10 μM per day) in addition to the ongoing mineralization of unlabeled benzene. Metaproteomics revealed high abundances of Clostridiales followed by Syntrophobacterales, Desulfobacterales, Desulfuromonadales, Desulfovibrionales, Archaeoglobales, and Campylobacterales. Pulsed acetate protein-SIP results indicated that members of the Campylobacterales, the Syntrophobacterales, the Archaeoglobales, the Clostridiales, and the Desulfobacterales were linked to acetate utilization in descending abundance. The Campylobacterales revealed the fastest and highest 13C incorporation. Previous experiments suggested that the activity of the Campylobacterales was not essential for anaerobic benzene degradation in the investigated community. However, these organisms were consistently detected in various hydrocarbon-degrading and sulfate-reducing consortia enriched from the same aquifer. Here, we demonstrate that this member of the Campylobacterales is the dominant acetate utilizer in the benzene-degrading microbial consortium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mancini SA, Ulrich AC, Lacrampe-Couloume G, Sleep B, Edwards EA, Lollar BS (2003) Carbon and hydrogen isotopic fractionation during anaerobic biodegradation of benzene. Appl Environ Microbiol 69(1):191–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dean BJ (1985) Recent findings on the genetic toxicology of benzene, toluene, xylenes and phenols. Mutation Res 154(3):153–181

    Article  CAS  PubMed  Google Scholar 

  3. Snyder R (2000) Overview of the toxicology of benzene. J Tox Environ Health Part A 61(5-6):339–346. doi:10.1080/00984100050166334

    Article  CAS  Google Scholar 

  4. Christensen TH, Kjeldsen P, Albrechtsen HJ, Heron G, Nielsen PH, Bjerg PL, Holm PE (1994) Attenuation of landfill leachate pollutants in aquifers. Crit Rev Env Sci Tec 24(2):119–202

    Article  CAS  Google Scholar 

  5. Christensen TH, Kjeldsen P, Bjerg PL, Jensen DL, Christensen JB, Baun A, Albrechtsen HJ, Heron C (2001) Biogeochemistry of landfill leachate plumes. Appl Geochem 16(7–8):659–718. doi:10.1016/S0883-2927(00)00082-2

    Article  CAS  Google Scholar 

  6. Grbic-Galic D, Vogel TM (1987) Transformation of toluene and benzene by mixed methanogenic cultures. Appl Environ Microbiol 53(2):254–260

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Major DW, Mayfield CI, Barker JF (1988) Biotransformation of benzene by denitrification in aquifer sand. Ground Water 26(1):8–14. doi:10.1111/j.1745-6584.1988.tb00362.x

    Article  CAS  Google Scholar 

  8. Zhang T, Tremblay PL, Chaurasia AK, Smith JA, Bain TS, Lovley DR (2013) Anaerobic benzene oxidation via phenol in Geobacter metallireducens. Appl Environ Microbiol 79(24):7800–7806. doi:10.1128/AEM.03134-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Abu Laban N, Selesi D, Rattei T, Tischler P, Meckenstock RU (2010) Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture. Environ Microbiol 12(10):2783–2796. doi:10.1111/j.1462-2920.2010.02248.x

    CAS  PubMed  Google Scholar 

  10. Ulrich AC, Beller HR, Edwards EA (2005) Metabolites detected during biodegradation of 13C6-benzene in nitrate-reducing and methanogenic enrichment cultures. Environ Sci Technol 39(17):6681–6691

    Article  CAS  PubMed  Google Scholar 

  11. Kunapuli U, Griebler C, Beller HR, Meckenstock RU (2008) Identification of intermediates formed during anaerobic benzene degradation by an iron-reducing enrichment culture. Environ Microbiol 10(7):1703–1712. doi:10.1111/j.1462-2920.2008.01588.x

    Article  CAS  PubMed  Google Scholar 

  12. Taubert M, Vogt C, Wubet T, Kleinsteuber S, Tarkka MT, Harms H, Buscot F, Richnow HH, von Bergen M, Seifert J (2012) Protein-SIP enables time-resolved analysis of the carbon flux in a sulfate-reducing, benzene-degrading microbial consortium. ISME J 6(12):2291–2301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kleinsteuber S, Schleinitz KM, Breitfeld J, Harms H, Richnow HH, Vogt C (2008) Molecular characterization of bacterial communities mineralizing benzene under sulfate-reducing conditions. FEMS Microbiol Ecol 66(1):143–157. doi:10.1111/j.1574-6941.2008.00536.x

    Article  CAS  PubMed  Google Scholar 

  14. Fischer A, Gehre M, Breitfeld J, Richnow HH, Vogt C (2009) Carbon and hydrogen isotope fractionation of benzene during biodegradation under sulfate-reducing conditions: a laboratory to field site approach. Rapid Comm Mass Spec 23(16):2439–2447. doi:10.1002/rcm.4049

    Article  CAS  Google Scholar 

  15. Herrmann S, Kleinsteuber S, Chatzinotas A, Kuppardt S, Lueders T, Richnow HH, Vogt C (2010) Functional characterization of an anaerobic benzene-degrading enrichment culture by DNA stable isotope probing. Environ Microbiol 12(2):401–411. doi:10.1111/j.1462-2920.2009.02077.x

    Article  CAS  PubMed  Google Scholar 

  16. Rakoczy J, Schleinitz KM, Müller N, Richnow HH, Vogt C (2011) Effects of hydrogen and acetate on benzene mineralisation under sulphate-reducing conditions. FEMS Microbiol Ecol 77(2):238–247. doi:10.1111/j.1574-6941.2011.01101.x

    Article  CAS  PubMed  Google Scholar 

  17. Vogt C, Godeke S, Treutler HC, Weiss H, Schirmer M, Richnow HH (2007) Benzene oxidation under sulfate-reducing conditions in columns simulating in situ conditions. Biodegradation 18(5):625–636. doi:10.1007/s10532-006-9095-1

    Article  CAS  PubMed  Google Scholar 

  18. Campbell BJ, Engel AS, Porter ML, Takai K (2006) The versatile epsilon-proteobacteria: key players in sulphidic habitats. Nature Rev Microbiol 4(6):458–468. doi:10.1038/nrmicro1414

    Article  CAS  Google Scholar 

  19. Takai K, Gamo T, Tsunogai U, Nakayama N, Hirayama H, Nealson KH, Horikoshi K (2004) Geochemical and microbiological evidence for a hydrogen-based, hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) beneath an active deep-sea hydrothermal field. Extremophiles 8(4):269–282. doi:10.1007/s00792-004-0386-3

    Article  CAS  PubMed  Google Scholar 

  20. Nakagawa S, Takai K (2008) Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. FEMS Microbiol Ecol 65(1):1–14. doi:10.1111/j.1574-6941.2008.00502.x

    Article  CAS  PubMed  Google Scholar 

  21. Porter ML, Engel AS (2008) Diversity of uncultured Epsilonproteobacteria from terrestrial sulfidic caves and springs. Appl Environ Microbiol 74(15):4973–4977. doi:10.1128/AEM.02915-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jones DS, Tobler DJ, Schaperdoth I, Mainiero M, Macalady JL (2010) Community structure of subsurface biofilms in the thermal sulfidic caves of Acquasanta Terme, Italy. Appl Environ Microbiol 76(17):5902–5910. doi:10.1128/AEM.00647-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hamilton TL, Jones DS, Schaperdoth I, Macalady JL (2014) Metagenomic insights into S(0) precipitation in a terrestrial subsurface lithoautotrophic ecosystem. Front Microbiol 5:756. doi:10.3389/fmicb.2014.00756

    PubMed  PubMed Central  Google Scholar 

  24. Yamamoto M, Takai K (2011) Sulfur metabolisms in epsilon- and gamma-proteobacteria in deep-sea hydrothermal fields. Front Microbiol 2:192. doi:10.3389/fmicb.2011.00192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nakagawa S, Takaki Y, Shimamura S, Reysenbach AL, Takai K, Horikoshi K (2007) Deep-sea vent epsilon-proteobacterial genomes provide insights into emergence of pathogens. Proc Natl Acad Sci U S A 104(29):12146–12150. doi:10.1073/pnas.0700687104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nakagawa S, Takai K, Inagaki F, Hirayama H, Nunoura T, Horikoshi K, Sako Y (2005) Distribution, phylogenetic diversity and physiological characteristics of epsilon-Proteobacteria in a deep-sea hydrothermal field. Environ Microbiol 7(10):1619–1632. doi:10.1111/j.1462-2920.2005.00856.x

    Article  CAS  PubMed  Google Scholar 

  27. Handley KM, VerBerkmoes NC, Steefel CI, Williams KH, Sharon I, Miller CS, Frischkorn KR, Chourey K, Thomas BC, Shah MB, Long PE, Hettich RL, Banfield JF (2013) Biostimulation induces syntrophic interactions that impact C, S and N cycling in a sediment microbial community. ISME J 7(4):800–816. doi:10.1038/ismej.2012.148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schirmer M, Dahmke A, Dietrich P, Dietze M, Gödeke S, Richnow HH, Schirmer K, Weiss H, Teutsch G (2006) Natural attenuation research at the contaminated megasite Zeitz. J Hydrol 328(3–4):393–407. doi:10.1016/j.jhydrol.2005.12.019

    Article  Google Scholar 

  29. Benndorf D, Vogt C, Jehmlich N, Schmidt Y, Thomas H, Woffendin G, Shevchenko A, Richnow HH, von Bergen M (2009) Improving protein extraction and separation methods for investigating the metaproteome of anaerobic benzene communities within sediments. Biodegradation 20(6):737–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  PubMed  Google Scholar 

  31. Jehmlich N, Schmidt F, Hartwich M, von Bergen M, Richnow HH, Vogt C (2008) Incorporation of carbon and nitrogen atoms into proteins measured by protein-based stable isotope probing (Protein-SIP). Rapid Comm Mass Spec 22(18):2889–2897. doi:10.1002/rcm.3684

    Article  CAS  Google Scholar 

  32. Bozinovski D, Taubert M, Kleinsteuber S, Richnow HH, von Bergen M, Vogt C, Seifert J (2014) Metaproteogenomic analysis of a sulfate-reducing enrichment culture reveals genomic organization of key enzymes in the m-xylene degradation pathway and metabolic activity of proteobacteria. Syst Appl Microbiol 37(7):488–501. doi:10.1016/j.syapm.2014.07.005

    Article  CAS  PubMed  Google Scholar 

  33. Keller AH, Schleinitz KM, Starke R, Bertilsson S, Vogt C, Kleinsteuber S (2015) Metagenome-based metabolic reconstruction reveals the ecophysiological function of Epsilonproteobacteria in a hydrocarbon-contaminated sulfidic aquifer. Front Microbiol 6:1396. doi:10.3389/fmicb.2015.01396

    Article  PubMed  PubMed Central  Google Scholar 

  34. Vallenet D, Belda E, Calteau A, Cruveiller S, Engelen S, Lajus A, Le Fevre F, Longin C, Mornico D, Roche D, Rouy Z, Salvignol G, Scarpelli C, Thil Smith AA, Weiman M, Medigue C (2013) MicroScope—an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data. Nucleic Acids Res 41(Database issue):D636–D647. doi:10.1093/nar/gks1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vallenet D, Labarre L, Rouy Z, Barbe V, Bocs S, Cruveiller S, Lajus A, Pascal G, Scarpelli C, Medigue C (2006) MaGe: a microbial genome annotation system supported by synteny results. Nucleic Acids Res 34(1):53–65. doi:10.1093/nar/gkj406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kohlbacher O, Reinert K, Gropl C, Lange E, Pfeifer N, Schulz-Trieglaff O, Sturm M (2007) TOPP—the OpenMS proteomics pipeline. Bioinformatics 23(2):e191–e197. doi:10.1093/bioinformatics/btl299

    Article  CAS  PubMed  Google Scholar 

  37. Sturm M, Bertsch A, Gropl C, Hildebrandt A, Hussong R, Lange E, Pfeifer N, Schulz-Trieglaff O, Zerck A, Reinert K, Kohlbacher O (2008) OpenMS—an open-source software framework for mass spectrometry. BMC Bioinformatics 9:163. doi:10.1186/1471-2105-9-163

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sachsenberg T, Herbst FA, Taubert M, Kermer R, Jehmlich N, von Bergen M, Seifert J, Kohlbacher O (2014) MetaProSIP: automated inference of stable isotope incorporation rates in proteins for functional metaproteomics. J Proteom Res 14(2):619–627. doi:10.1021/pr500245w

    Article  Google Scholar 

  39. Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, Gatto L, Fischer B, Pratt B, Egertson J, Hoff K, Kessner D, Tasman N, Shulman N, Frewen B, Baker TA, Brusniak MY, Paulse C, Creasy D, Flashner L, Kani K, Moulding C, Seymour SL, Nuwaysir LM, Lefebvre B, Kuhlmann F, Roark J, Rainer P, Detlev S, Hemenway T, Huhmer A, Langridge J, Connolly B, Chadick T, Holly K, Eckels J, Deutsch EW, Moritz RL, Katz JE, Agus DB, MacCoss M, Tabb DL, Mallick P (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30(10):918–920. doi:10.1038/nbt.2377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Herrmann S, Kleinsteuber S, Neu TR, Richnow HH, Vogt C (2008) Enrichment of anaerobic benzene-degrading microorganisms by in situ microcosms. FEMS Microbiol Ecol 63(1):94–106. doi:10.1111/j.1574-6941.2007.00401.x

    Article  CAS  PubMed  Google Scholar 

  41. Klenk HP, Clayton RA, Tomb JF, White O, Nelson KE, Ketchum KA, Dodson RJ, Gwinn M, Hickey EK, Peterson JD, Richardson DL, Kerlavage AR, Graham DE, Kyrpides NC, Fleischmann RD, Quackenbush J, Lee NH, Sutton GG, Gill S, Kirkness EF, Dougherty BA, McKenney K, Adams MD, Loftus B, Peterson S, Reich CI, McNeil LK, Badger JH, Glodek A, Zhou LX, Overbeek R, Gocayne JD, Weidman JF, McDonald L, Utterback T, Cotton MD, Spriggs T, Artiach P, Kaine BP, Sykes SM, Sadow PW, DAndrea KP, Bowman C, Fujii C, Garland SA, Mason TM, Olsen GJ, Fraser CM, Smith HO, Woese CR, Venter JC (1997) The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390(6658):364–370

    Article  CAS  PubMed  Google Scholar 

  42. Hedderich R, Klimmek O, Kroger A, Dirmeier R, Keller M, Stetter KO (1998) Anaerobic respiration with elemental sulfur and with disulfides. FEMS Microbiol Rev 22(5):353–381. doi:10.1111/j.1574-6976.1998.tb00376.x

    Article  CAS  Google Scholar 

  43. Frigaard NU, Dahl C (2009) Sulfur metabolism in phototrophic sulfur bacteria. Adv Microb Phys 54:103–200. doi:10.1016/S0065-2911(08)00002-7

    Article  CAS  Google Scholar 

  44. Wood HG (1991) Life with CO or CO2 and H2 as a source of carbon and energy. FASEB J 5:156–163

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support by the German Research Foundation, Priority Program 1319. We are grateful to Michaela Wunderlich and Sibylle Mothes from the UFZ Department Analytical Chemistry for acetate analysis as well as Jörg Ahlheim and Werner Kletzander from the UFZ Department Groundwater Remediation for assistance in sampling of biological material from the columns. Benjamin Scheer is acknowledged for the support in using the Orbitrap in the ProVIS laboratory. The authors are grateful for using the analytical facilities of the Centre for Chemical Microscopy (ProVIS) at the Helmholtz Centre for Environmental Research which is supported by the European Regional Development Funds (EFRE–Europe funds Saxony) and the Helmholtz Association. We thank LABGeM and the National Infrastructure France Génomique for enabling the use of the annotation platform MicroScope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Seifert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 392 kb)

ESM 2

(XLSX 743 kb)

ESM 3

(XLSX 773 kb)

ESM 4

(XLSX 742 kb)

ESM 5

(XLSX 559 kb)

ESM 6

(XLSX 786 kb)

ESM 7

(XLSX 803 kb)

ESM 8

(XLSX 810 kb)

ESM 9

(XLSX 667 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starke, R., Keller, A., Jehmlich, N. et al. Pulsed 13C2-Acetate Protein-SIP Unveils Epsilonproteobacteria as Dominant Acetate Utilizers in a Sulfate-Reducing Microbial Community Mineralizing Benzene. Microb Ecol 71, 901–911 (2016). https://doi.org/10.1007/s00248-016-0731-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0731-y

Keywords

Navigation