Skip to main content

Advertisement

Log in

Microbial Genomics of a Host-Associated Commensal Bacterium in Fragmented Populations of Endangered Takahe

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Isolation of wildlife into fragmented populations as a consequence of anthropogenic-mediated environmental change may alter host-pathogen relationships. Our understanding of some of the epidemiological features of infectious disease in vulnerable populations can be enhanced by the use of commensal bacteria as a proxy for invasive pathogens in natural ecosystems. The distinctive population structure of a well-described meta-population of a New Zealand endangered flightless bird, the takahe (Porphyrio hochstetteri), provided a unique opportunity to investigate the influence of host isolation on enteric microbial diversity. The genomic epidemiology of a prevalent rail-associated endemic commensal bacterium was explored using core genome and ribosomal multilocus sequence typing (rMLST) of 70 Campylobacter sp. nova 1 isolated from one third of the takahe population resident in multiple locations. While there was evidence of recombination between lineages, bacterial divergence appears to have occurred and multivariate analysis of 52 rMLST genes revealed location-associated differentiation of C. sp. nova 1 sequence types. Our results indicate that fragmentation and anthropogenic manipulation of populations can influence host-microbial relationships, with potential implications for niche adaptation and the evolution of micro-organisms in remote environments. This study provides a novel framework in which to explore the complex genomic epidemiology of micro-organisms in wildlife populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Daszak P, Cunningham AA, Hyatt AD (2000) Emerging infectious diseases of wildlife—threats to biodiversity and human health. Science 287:443–449

    Article  CAS  PubMed  Google Scholar 

  2. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P (2008) Global trends in emerging infectious diseases. Nature 451:990–993

    Article  CAS  PubMed  Google Scholar 

  3. Caillaud D, Craft ME, Meyers LA (2013) Epidemiological effects of group size variation in social species. J R Soc Interface 10:1742–5662

    Article  Google Scholar 

  4. Drewe JA, Eames KTD, Madden JR, Pearce GP (2011) Integrating contact network structure into tuberculosis epidemiology in meerkats in South Africa: implications for control. Prev Vet Med 101:113–120

    Article  PubMed  Google Scholar 

  5. Almberg ES, Cross PC, Dobson AP, Smith DW, Hudson PJ (2012) Parasite invasion following host reintroduction: a case study of Yellowstone’s wolves. Philos Trans R Soc Lond B Biol Sci 367:2840–2851

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nunn CL, Thrall PH, Kappeler PM (2014) Shared resources and disease dynamics in spatially structured populations. Ecol Model 272:198–207

    Article  Google Scholar 

  7. Nunn CL, Thrall PH, Leendertz FH, Boesch C (2011) The spread of fecally transmitted parasites in socially-structured populations. PLoS One 6:e21677. doi:10.1371/journal.pone.0021677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cowled BD, Ward MP, Laffan SW, Galea F, Garner MG, MacDonald AJ, Marsh I, Muellner P, Negus K, Quasim S, Woolnough AP, Sarre SD (2012) Integrating survey and molecular approaches to better understand wildlife disease ecology. PLoS One 7:e46310. doi:10.1371/journal.pone.0046310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Guivier E, Galan M, Chaval Y, Xuereb A, Ribas Salvador A, Poulle ML, Voutilainen L, Henttonen H, Charbonnel N, Cosson JF (2011) Landscape genetics highlights the role of bank vole metapopulation dynamics in the epidemiology of Puumala hantavirus. Mol Ecol 20:3569–3583

    CAS  PubMed  Google Scholar 

  10. Grange ZL, Van Andel M, French NP, Gartrell BD (2014) Network analysis of translocated takahe populations to identify disease surveillance targets. Conserv Biol 28:518–528

    Article  PubMed  Google Scholar 

  11. Foley JA, Defries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574

    Article  CAS  PubMed  Google Scholar 

  12. Plowright RK, Sokolow SH, Gorman ME, Daszak P, Foley JE (2008) Causal inference in disease ecology: investigating ecological drivers of disease emergence. Front Ecol Environ 6:420–429

    Article  Google Scholar 

  13. Grange ZL, Gartrell BD, Biggs PJ, Nelson NJ, Marshall JC, Howe L, Balm GMM, French NP (2015) Using a common commensal bacterium in endangered Takahe, as a model to explore pathogen dynamics in isolated wildlife populations. Conserv Biol 29(5):1327–36

    Article  PubMed  Google Scholar 

  14. Torchin ME, Lafferty KD, Dobson AP, McKenzie VJ, Kuris AM (2003) Introduced species and their missing parasites. Nature 421:628–630

    Article  CAS  PubMed  Google Scholar 

  15. Tompkins DM, Dunn AM, Smith MJ, Telfer S (2011) Wildlife diseases: from individuals to ecosystems. J Anim Ecol 80:19–38

    Article  PubMed  Google Scholar 

  16. Silvy NJ (2012) The wildlife techniques manual. Johns Hopkins University Press, Baltimore, USA

    Google Scholar 

  17. Wobeser GA (2006) Essentials of disease in wild animals. Blackwell, Ames, USA

    Google Scholar 

  18. McCallum H, Barlow N, Hone J (2001) How should pathogen transmission be modelled? Trends Ecol Evol 16:295–300

    Article  PubMed  Google Scholar 

  19. Bull CM, Godfrey SS, Gordon DM (2012) Social networks and the spread of Salmonella in a sleepy lizard population. Mol Ecol 21:4386–4392

    Article  CAS  PubMed  Google Scholar 

  20. Chiyo PI, Grieneisen LE, Wittemyer G, Moss CJ, Lee PC, Douglas-Hamilton I, Archie EA (2014) The influence of social structure, habitat, and host traits on the transmission of Escherichia coli in wild elephants. PLoS One 9:e93408. doi:10.1371/journal.pone.0093408

    Article  PubMed  PubMed Central  Google Scholar 

  21. VanderWaal KL, Atwill ER, Isbell LA, McCowan B (2014) Quantifying microbe transmission networks for wild and domestic ungulates in Kenya. Biol Conserv 169:136–146

    Article  Google Scholar 

  22. VanderWaal KL, Atwill ER, Isbell LA, McCowan B (2013) Linking social and pathogen transmission networks using microbial genetics in giraffe (Giraffa camelopardalis). J Anim Ecol 83:406–414

    Article  PubMed  Google Scholar 

  23. BirdLife International (2013) Porphyrio hochstetteri. www.iucnredlist.org. Accessed 24 February 2014

  24. Wickes C, Crouchley D, Maxwell JM (2009) Takahe (Porphorio hochstetteri) recovery plan 2007–2012. Threatened species recovery plan 61. Department of Conservation, Wellington

    Google Scholar 

  25. Ballance A (2001) Takahe: the bird that twice came back from the grave. In: The takahe: 50 years of conservation management and research. Otago University Press, Dunedin, New Zealand, pp 18–22

    Google Scholar 

  26. French NP, Yu S, Biggs P, Holland B, Fearnhead P, Binney B, Fox A, Grove-White D, Leigh JW, Miller W, Muellner P, Carter P (2014) Evolution of Campylobacter species in New Zealand. In: Sheppard SK (ed) Campylobacter ecology and evolution. Caister Academic Press, Norfolk, UK, pp 221–240

    Google Scholar 

  27. Archie EA, Luikart G, Ezenwa VO (2009) Infecting epidemiology with genetics: a new frontier in disease ecology. Trends Ecol Evol 24:21–30

    Article  PubMed  Google Scholar 

  28. Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony C, Colles FM, Wimalarathna H, Harrison OB, Sheppard SK, Cody AJ, Maiden MC (2012) Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiology 158:1005–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stevenson M (2014) epiR: an R package for the analysis of epidemiological data.

  30. Core Team R (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  31. Blaker H (2000) Confidence curves and improved exact confidence intervals for discrete distributions. Can J Stat 28:783–798

    Article  Google Scholar 

  32. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics. doi:10.1093/bioinformatics/btu153

    PubMed Central  Google Scholar 

  34. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li L, Stoeckert CJ, Roos DS (2003) OrthoMCL: identification of ortholog groups for Eukaryotic genomes. Genome Res 13:2178–2189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    Article  CAS  PubMed  Google Scholar 

  38. Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E Ltd, Plymouth, UK

    Google Scholar 

  39. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth, UK

    Google Scholar 

  40. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. doi:10.1111/j.1442-9993.2001.01070.pp.x

    Google Scholar 

  41. Manly BFJ (2007) Randomization, bootstrap and Monte Carlo methods in biology. Chapman & Hall/ CRC, Boca Raton, FL

    Google Scholar 

  42. Biek R, O’Hare A, Wright D, Mallon T, McCormick C, Orton RJ, McDowell S, Trewby H, Skuce RA, Kao RR (2012) Whole genome sequencing reveals local transmission patterns of Mycobacterium bovis in sympatric cattle and badger populations. PLoS Pathog 8:e1003008. doi:10.1371/journal.ppat.1003008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Girard JM, Wagner DM, Vogler AJ, Keys C, Allender CJ, Drickamer LC, Keim P (2004) Differential plague-transmission dynamics determine Yersinia pestis population genetic structure on local, regional, and global scales. Proc Natl Acad Sci U S A 101:8408–8413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bunin JS, Jamieson IG (1995) New approaches toward a better understanding of the decline of takahe (Porphyrio mantelli) in New Zealand. Conserv Biol 9:100–106

    Article  Google Scholar 

  45. Trewick SA, Worthy TH (2001) Origins and prehistoric ecology of takahe based on morphometric, molecular, and fossil data. In: Lee WG, Jamieson IG (eds) The Takahe: 50 years of conservation management and research. Otago University Press, Dunedin, New Zealand, pp 31–48

    Google Scholar 

  46. Bunin JS, Jamieson IG, Eason D (1997) Low reproductive success of the endangered takahe Porphyrio mantelli on offshore island refuges in New Zealand. Ibis 139:144–151

    Article  Google Scholar 

  47. Craft ME, Volz E, Packer C, Meyers LA (2009) Distinguishing epidemic waves from disease spillover in a wildlife population. P Roy Soc B Bio 276:1777–1785

    Article  Google Scholar 

  48. Jaros P, Cookson AL, Campbell DM, Duncan GE, Prattley D, Carter P, Besser TE, Shringi S, Hathaway S, Marshall JC, French NP (2014) Geographic divergence of bovine and human shiga toxin-producing Escherichia coli O157:H7 genotypes, New Zealand. Emerg Infect Dis 20:1980–1989

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jamieson IG, Wallis GP, Briskie JV (2006) Inbreeding and endangered species management: is New Zealand out of step with the rest of the world? Conserv Biol 20:38–47

    Article  PubMed  Google Scholar 

  50. Johnson PTJ, Rohr JR, Hoverman JT, Kellermanns E, Bowerman J, Lunde KB (2012) Living fast and dying of infection: host life history drives interspecific variation in infection and disease risk. Ecol Lett 15:235–242

    Article  PubMed  Google Scholar 

  51. Ryan CJ, Jamieson IG (1998) Estimating the home range and carrying capacity for takahe on predator free offshore islands: implications for future management. N Z J Ecol 22:17–24

    Google Scholar 

  52. Becker DJ, Streicker DG, Altizer S (2015) Linking anthropogenic resources to wildlife–pathogen dynamics: a review and meta-analysis. Ecol Lett 18:483–495

    Article  PubMed  PubMed Central  Google Scholar 

  53. Archie EA, Ezenwa VO (2011) Population genetic structure and history of a generalist parasite infecting multiple sympatric host species. Int J Parasitol 41:89–98

    Article  PubMed  Google Scholar 

  54. Gandon S, Nuismer SL (2009) Interactions between genetic drift, gene flow, and selection mosaics drive parasite local adaptation. Am Nat 173:212–224

    Article  PubMed  Google Scholar 

  55. Jousimo J, Tack AJM, Ovaskainen O, Mononen T, Susi H, Tollenaere C, Laine A-L (2014) Ecological and evolutionary effects of fragmentation on infectious disease dynamics. Science 344:1289–1293

    Article  CAS  PubMed  Google Scholar 

  56. Anderson RM, May RM (1986) The invasion, persistence and spread of infectious diseases within animal and plant communities. Philos Trans R Soc Lond B Biol Sci 314:533–570

    Article  CAS  PubMed  Google Scholar 

  57. Woodford MH (1993) International disease implications for wildlife translocation. J Zoo Wildl Med 24:265–270

    Google Scholar 

  58. Waldenstrom J, Axelsson-Olsson D, Olsen B, Hasselquist D, Griekspoor P, Jansson L, Teneberg S, Svensson L, Ellstrom P (2010) Campylobacter jejuni colonization in wild birds: results from an infection experiment. PLoS One 5:e9082. doi:10.1371/journal.pone.0009082

    Article  PubMed  PubMed Central  Google Scholar 

  59. Vo AT, Jedlicka JA (2014) Protocols for metagenomic DNA extraction and Illumina amplicon library preparation for faecal and swab samples. Mol Ecol Resour 14:1183–1197

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the Allan Wilson Centre. We would like to thank L. Howe, A. Reynolds, P. Marsh, J. Marshall, D. Wilkinson, G. Greaves, A. Wilson, B. Jackson, the friends of Tiritiri Matangi for assistance, Department of Conservation and the Maori community for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoë L. Grange.

Ethics declarations

Ethical Approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. This article does not contain any studies with human participants performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Online resource 1

Online resource 1 contains the list of publically available Campylobacter spp. genomes used (Appendix S1), PERMANOVA results (Appendix S2 and 3), MDS plots (Appendix S4 and 5) and results of the independence test comparing clades and locations (Appendix S6). (DOCX 247 kb)

Online resource 2

Tables of factors, cofactors, allelic profiles and distance matrices are available in online resource 2. (XLSX 165 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grange, Z.L., Gartrell, B.D., Biggs, P.J. et al. Microbial Genomics of a Host-Associated Commensal Bacterium in Fragmented Populations of Endangered Takahe. Microb Ecol 71, 1020–1029 (2016). https://doi.org/10.1007/s00248-015-0721-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-015-0721-5

Keywords

Navigation