Skip to main content
Log in

Characterization of fecal vancomycin-resistant enterococci with acquired and intrinsic resistance mechanisms in wild animals, Spain

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The objectives were to evaluate the presence of vancomycin-resistant enterococci with acquired (VRE-a) and intrinsic (VRE-i) resistance mechanisms in fecal samples from different wild animals, and analyze their phenotypes and genotypes of antimicrobial resistance. A total of 348 cloacal/rectal samples from red-legged partridges (127), white storks (81), red kites (59), and wild boars (81) (June 2014/February 2015) were inoculated in Slanetz-Bartley agar supplemented with vancomycin (4 μg/mL). We investigated the susceptibility to 12 antimicrobials and the presence of 19 antimicrobial resistance and five virulence genes. In addition, we performed multilocus sequence typing, detection of IS16 and studied Tn1546 structure. One VRE-a isolate was identified in one wild boar. This isolate was identified as Enterococcus faecium, harbored vanA gene included into Tn1546 (truncated with IS1542/IS1216), and belonged to the new ST993. This isolate contained the erm(A), erm(B), tet(M), dfrG, and dfrK genes. Neither element IS16 nor the studied virulence genes were detected. Ninety-six VRE-i isolates were identified (89 Enterococcus gallinarum and seven Enterococcus casseliflavus), with the following prevalence: red kites (71.2 %), white storks (46.9 %), red-legged partridges (7.9 %), and wild boars (4.9 %). Most E. gallinarum isolates showed resistance to tetracycline (66.3 %) and/or erythromycin (46.1 %). High-level resistance to aminoglycosides was present among our VRE-i isolates: kanamycin (22.9 %), streptomycin (11.5 %), and gentamicin (9.4 %). In general, VRE-i isolates of red kites showed higher rates of resistance for non-glycopeptide agents than those of other animal species. The dissemination of acquired resistance mechanisms in natural environments could have implications in the global spread of resistance with public health implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Reference

  1. de Perio MA, Yarnold PR, Warren J, Noskin GA (2006) Risk factors and outcomes associated with non-Enterococcus faecalis, non-Enterococcus faecium enterococcal bacteremia. Infect Control Hosp Epidemiol 27:28–33

    Article  PubMed  Google Scholar 

  2. Arias CA, Contreras GA, Murray BE (2010) Management of multidrug-resistant enterococcal infections. Clin Microbiol Infect 16:555–562

    Article  CAS  PubMed  Google Scholar 

  3. López M, Rezusta A, Seral C, Aspiroz C, Marne C, Aldea MJ, Ferrer I, Revillo MJ, Castillo FJ, Torres C (2012) Detection and characterization of a ST6 clone of vanB2-Enterococcus faecalis from three different hospitals in Spain. Eur J Clin Microbiol Infect Dis 31:257–260

    Article  PubMed  Google Scholar 

  4. Nebreda T, Oteo J, Aldea C, García-Estébanez C, Gastelu-Iturri J, Bautista V, García-Cobos S, Campos J (2007) Hospital dissemination of a clonal complex 17 vanB2-containing Enterococcus faecium. J Antimicrob Chemother 59:806–807

    Article  CAS  PubMed  Google Scholar 

  5. Werner G, Coque TM, Hammerum AM, Hope R, Hryniewicz W, Johnson A, Klare I, Kristinsson KG, Leclercq R, Lester CH, Lillie M, Novais C, Olsson-Liljequist B, Peixe LV, Sadowy E, Simonsen GS, Top J, Vuopio-Varkila J, Willems RJ, Witte W, Woodford N (2008) Emergence and spread of vancomycin resistance among enterococci in Europe. Euro Surveill 13:19046

    PubMed  Google Scholar 

  6. Hammerum AM (2012) Enterococci of animal origin and their significance for public health. Clin Microbiol Infect 18:619–625

    Article  CAS  PubMed  Google Scholar 

  7. López M, Sáenz Y, Rojo-Bezares B, Martínez S, del Campo R, Ruiz-Larrea F, Zarazaga M, Torres C (2009) Detection of vanA and vanB2-containing enterococci from food samples in Spain, including Enterococcus faecium strains of CC17 and the new singleton ST425. Int J Food Microbiol 133:172–178

    Article  PubMed  Google Scholar 

  8. Torres C, Tenorio C, Portillo A, García M, Martínez C, del Campo R, Ruiz-Larrea F, Zarazaga M (2003) Intestinal colonization by vanA- or vanB2-containing enterococcal isolates of healthy animals in Spain. Microb Drug Resist 9:S47–52

    Article  CAS  PubMed  Google Scholar 

  9. Varela AR, Ferro G, Vredenburg J, Yanık M, Vieira L, Rizzo L, Lameiras C, Manaia CM (2013) Vancomycin resistant enterococci: from the hospital effluent to the urban wastewater treatment plant. Sci Total Environ 450–451:155–161

    Article  PubMed  Google Scholar 

  10. Lauderdale TL, Shiau YR, Wang HY, Lai JF, Huang IW, Chen PC, Chen HY, Lai SS, Liu YF, Ho M (2007) Effect of banning vancomycin analogue avoparcin on vancomycin-resistant enterococci in chicken farms in Taiwan. Environ Microbiol 9:819–823

    Article  PubMed  Google Scholar 

  11. Hegstad K, Mikalsen T, Coque TM, Werner G, Sundsfjord A (2010) Mobile genetic elements and their contribution to the emergence of antimicrobial resistant Enterococcus faecalis and Enterococcus faecium. Clin Microbiol Infect 16:541–554

    Article  CAS  PubMed  Google Scholar 

  12. Heuer OE, Hammerum AM, Collignon P, Wegener HC (2006) Human health hazard from antimicrobial-resistant enterococci in animals and food. Clin Infect Dis 43:911–916

    Article  PubMed  Google Scholar 

  13. Lozano C, González-Barrio D, García JT, Ceballos S, Olea PP, Ruiz-Fons F, Torres C (2015) Detection of vancomycin-resistant Enterococcus faecalis ST6-vanB2 and E. faecium ST915-vanA in faecal samples of wild Rattus rattus in Spain. Vet Microbiol 177:168–174

    Article  CAS  PubMed  Google Scholar 

  14. Oravcova V, Ghosh A, Zurek L, Bardon J, Guenther S, Cizek A, Literak I (2013) Vancomycin-resistant enterococci in rooks (Corvus frugilegus) wintering throughout Europe. Environ Microbiol 15:548–556

    Article  CAS  PubMed  Google Scholar 

  15. Silva N, Igrejas G, Figueiredo N, Gonçalves A, Radhouani H, Rodrigues J, Poeta P (2010) Molecular characterization of antimicrobial resistance in enterococci and Escherichia coli isolates from European wild rabbit (Oryctolagus cuniculus). Sci Total Environ 408:4871–4876

    Article  CAS  PubMed  Google Scholar 

  16. Silva N, Igrejas G, Rodrigues P, Rodrigues T, Gonçalves A, Felgar AC, Pacheco R, Gonçalves D, Cunha R, Poeta P (2011) Molecular characterization of vancomycin-resistant enterococci and extended-spectrum β-lactamase-containing Escherichia coli isolates in wild birds from the Azores Archipelago. Avian Pathol 40:473–479

    Article  CAS  PubMed  Google Scholar 

  17. Clinical and Laboratory Standards Institute, CLSI (2014) Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement. In: CLSI document M100-S24. Wayne, Clinical and Laboratory Standards Institute

    Google Scholar 

  18. Domingo MC, Huletsky A, Giroux R, Boissinot K, Picard FJ, Lebel P, Ferraro MJ, Bergeron MG (2005) High prevalence of glycopeptide resistance genes vanB, vanD, and vanG not associated with enterococci in human fecal flora. Antimicrob Agents Chemother 49:4784–4786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. López M, Sáenz Y, Alvarez-Martínez MJ, Marco F, Robredo B, Rojo-Bezares B, Ruiz-Larrea F, Zarazaga M, Torres C (2010) Tn1546 structures and multilocus sequence typing of vanA-containing enterococci of animal, human and food origin. J Antimicrob Chemother 65:1570–1575

    Article  PubMed  Google Scholar 

  20. Homan WL, Tribe D, Poznanski S, Li M, Hogg G, Spalburg E, Van Embden JD, Willems RJ (2002) Multilocus sequence typing scheme for Enterococcus faecium. J Clin Microbiol 40:1963–1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Werner G, Fleige C, Geringer U, van Schaik W, Klare I, Witte W (2011) IS element IS16 as a molecular screening tool to identify hospital-associated strains of Enterococcus faecium. BMC Infect Dis 11:80

    Article  PubMed  PubMed Central  Google Scholar 

  22. Vankerckhoven V, Van Autgaerden T, Vael C, Lammens C, Chapelle S, Rossi R, Jabes D, Goossens H (2004) Development of a multiplex PCR for the detection of asa1, gelE, cylA, esp, and hyl genes in enterococci and survey for virulence determinants among European hospital isolates of Enterococcus faecium. J Clin Microbiol 42:4473–4479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Poeta P, Costa D, Igrejas G, Rojo-Bezares B, Sáenz Y, Zarazaga M, Ruiz-Larrea F, Rodrigues J, Torres C (2007) Characterization of vanA-containing Enterococcus faecium isolates carrying Tn5397-like and Tn916/Tn1545-like transposons in wild boars (Sus Scrofa). Microb Drug Resist Fall 13:151–156

    Article  CAS  Google Scholar 

  24. Poeta P, Costa D, Igrejas G, Rodrigues J, Torres C (2007) Phenotypic and genotypic characterization of antimicrobial resistance in faecal enterococci from wild boars (Sus scrofa). Vet Microbiol 125:368–374

    Article  CAS  PubMed  Google Scholar 

  25. Mallon DJ, Corkill JE, Hazel SM, Wilson JS, French NP, Bennett M, Hart CA (2002) Excretion of vancomycin-resistant enterococci by wild mammals. Emerg Infect Dis 8:636–638

    Article  PubMed  PubMed Central  Google Scholar 

  26. Klibi N, Ben Amor I, Rahmouni M, Dziri R, Douja G, Ben Said L, Lozano C, Boudabous A, Ben Slama K, Mansouri R, Torres C (2015) Diversity of species and antibiotic resistance among fecal enterococci from wild birds in Tunisia. Detection of vanA-containing Enterococcus faecium isolates. Eur J Wildl Res 61:319–323

    Article  Google Scholar 

  27. Oravcova V, Zurek L, Townsend A, Clark AB, Ellis JC, Cizek A, Literak I (2014) American crows as carriers of vancomycin-resistant enterococci with vanA gene. Environ Microbiol 16:939–949

    Article  CAS  PubMed  Google Scholar 

  28. Silva N, Igrejas G, Felgar A, Gonçalves A, Pacheco R, Poeta P (2012) Molecular characterization of vanA-containing Enterococcus from migratory birds: song thrush (Turdus philomelos). Braz J Microbiol 43:1026–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rana SW, Kumar A, Walia SK, Berven K, Cumper K, Walia SK (2011) Isolation of Tn1546-like elements in vancomycin-resistant Enterococcus faecium isolated from wood frogs: an emerging risk for zoonotic bacterial infections to humans. J Appl Microbiol 110:35–43

    Article  CAS  PubMed  Google Scholar 

  30. Radhouani H, Igrejas G, Pinto L, Gonçalves A, Coelho C, Rodrigues J, Poeta P (2011) Molecular characterization of antibiotic resistance in enterococci recovered from seagulls (Larus cachinnans) representing an environmental health problem. J Environ Monit 13:2227–2233

    Article  CAS  PubMed  Google Scholar 

  31. Radhouani H, Poeta P, Gonçalves A, Pacheco R, Sargo R, Igrejas G (2012) Wild birds as biological indicators of environmental pollution: antimicrobial resistance patterns of Escherichia coli and enterococci isolated from common buzzards (Buteo buteo). J Med Microbiol 61:837–843

    Article  CAS  PubMed  Google Scholar 

  32. Aarestrup FM (2000) Characterization of glycopeptide-resistant Enterococcus faecium (GRE) from broilers and pigs in Denmark: genetic evidence that persistence of GRE min pig herds is associated with coselection by resistance to macrolides. J Clin Microbiol 38:2774–2777

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Borgen K, Sørum M, Wasteson Y, Kruse H, Oppegaard H (2002) Genetic linkage between erm(B) and vanA in Enterococcus hirae of poultry origin. Microb Drug Resist Winter 8:363–368

    Article  CAS  Google Scholar 

  34. Top J, Willems R, van der Velden S, Asbroek M, Bonten M (2008) Emergence of clonal complex 17 Enterococcus faecium in The Netherlands. J Clin Microbiol 46:214–219

    Article  PubMed  Google Scholar 

  35. Leavis HL, Bonten MJM, Willems RJL (2006) Identification of high-risk enterococcal clonal complexes: global dispersion and antibiotic resistance. Current Op Microbiol 9:454–460

    Article  CAS  Google Scholar 

  36. Poeta P, Costa D, Sáenz Y, Klibi N, Ruiz-Larrea F, Rodrigues J, Torres C (2005) Characterization of antibiotic resistance genes and virulence factors in faecal enterococci of wild animals in Portugal. J Vet Med B Infect Dis Vet Public Health 52:396–402

    Article  CAS  PubMed  Google Scholar 

  37. Coque TM, Tomayko JF, Ricke SC, Okhyusen PC, Murray BE (1996) Vancomycin-resistant enterococci from nosocomial, community, and animal sources in the United States. Antimicrob Agents Chemother 40:2605–2609

    PubMed  PubMed Central  Google Scholar 

  38. Sellin M, Palmgren H, Broman T, Bergström S, Olsen B (2000) Involving ornithologists in the surveillance of vancomycin-resistant enterococci. Emerg Infect Dis 6:87–88

    CAS  PubMed  PubMed Central  Google Scholar 

  39. World Organisation of Animal Health (OIE) (2014) OIE list of antimicrobial agents of veterinary importance., Available at: http://www.oie.int/fileadmin/Home/eng/Our_scientific_expertise/docs/pdf/OIE_list_antimicrobials.pdf

  40. World Health Organization (2011) WHO list of critically important antimicrobials., Available at: http://apps.who.int/iris/bitstream/10665/77376/1/9789241504485_eng.pdf?ua=1

  41. Cauwerts K, Decostere A, De Graef EM, Haesebrouck F, Pasmans F (2007) High prevalence of tetracycline resistance in Enterococcus isolates from broilers carrying the erm(B) gene. Avian Pathol 36:395–399

    Article  CAS  PubMed  Google Scholar 

  42. De Leener E, Martel A, Decostere A, Haesebrouck F (2004) Distribution of the erm(B) gene, tetracycline resistance genes, and Tn1545-like transposons in macrolide- and lincosamide-resistant enterococci from pigs and humans. Microb Drug Resist 10:341–345

    Article  PubMed  Google Scholar 

  43. del Campo R, Tenorio C, Rubio C, Castillo J, Torres C, Gómez-Lus R (2000) Aminoglycoside-modifying enzymes in high-level streptomycin and gentamicin resistant Enterococcus spp. in Spain. Int J Antimicrob Agents 15:221–226

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Project SAF2012-35474 from the Ministerio de Economía y Competitividad (MINECO) of Spain and the Fondo Europeo de Desarrollo Regional (FEDER), the project POIC-2014-001-P of the regional government of Castilla–La Mancha, and by the project RTA2011-00111-C03-02 from the National Institute for Research in Agricultural and Alimentary Technology (INIA), by CDTI (Centro para el Desarrollo Tecnológico Industrial, MINECO). Carmen Lozano has a contract associated with Project SAF2012-35474. Red kite trapping activities were developed by staff and volunteers of SEO-Monticola and Fondo de Amigos del Buitre within the framework of the red kite monitoring project at the Binaced Supplementary Feeding Point with the kind authorization of the Government of the Autonomous Regions of Aragón. We are especially indebted to Manuel Aguilera for help with trapping red kites in Huesca, and we acknowledge collaboration from Dr. Francisco Ruiz-Fons from IREC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Torres.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lozano, C., Gonzalez-Barrio, D., Camacho, M.C. et al. Characterization of fecal vancomycin-resistant enterococci with acquired and intrinsic resistance mechanisms in wild animals, Spain. Microb Ecol 72, 813–820 (2016). https://doi.org/10.1007/s00248-015-0648-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-015-0648-x

Keywords

Navigation