Skip to main content

Advertisement

Log in

Aerobic Biodegradation of 2,4,6-Trinitrotoluene (TNT) by Bacillus cereus İsolated from Contaminated Soil

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

In this study, biological degradation of 2,4,6-trinitrotoluene (TNT) which is very highly toxic environmentally and an explosive in nitroaromatic character was researched in minimal medium by Bacillus cereus isolated from North Atlantic Treaty Organization (NATO) TNT-contaminated soils. In contrast to most previous studies, the capability of this bacteria to transform in liquid medium containing TNT was investigated. During degradation, treatment of TNT was followed by high-performance liquid chromatography (HPLC) and achievement of degradation was calculated as percentage. At an initial concentration of 50 and 75 mg L−1, TNT was degraded respectively 68 % and 77 % in 96 h. It transformed into 2,4-dinitrotoluene and 4-aminodinitrotoluene derivates, which could be detected as intermediate metabolites by using thin-layer chromatography and gas chromatography–mass spectrometry analyses. Release of nitrite and nitrate ions were searched by spectrophotometric analyses. Depending upon Meisenheimer complex, while nitrite production was observed, nitrate was detected in none of the cultures. Results of our study propose which environmental pollutant can be removed by using microorganisms that are indigenous to the contaminated site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Al-Absi A (2008) Nitrate contamination of ground water and methemoglobinemia in gaza strip. J Al-Aqsa Unv 12:1–14

    Google Scholar 

  2. Behrend C, Heesche-Wagner K (1999) Formation of hydride-meisenheimer complexes of picric acid (2,4,6-trinitrophenol) and 2,4-dinitrophenol during mineralization of picric acid by Nocardioides sp. strain CB 22–2. Appl Environ Microbiol 65:1372–1377

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Boopathy R (2000) Bioremediation of explosives contaminated soil. Int Biodeterior Biodegrad 46:29–36. doi:10.1016/S0964-8305(00)00051-2

    Article  CAS  Google Scholar 

  4. Boopathy R, Wilson M, Montemagno CD, Manning Jnr JF, Kulpa CF (1994) Biological transformation of 2,4,6-trinitrotoluene (TNT) by soil bacteria isolated from TNT-contaminated soil. Bioresour Technol 47:19–24. doi:10.1016/0960-8524(94)90023-X

    Article  CAS  Google Scholar 

  5. Caballero A, Esteve-Núñez A, Zylstra GJ, Ramos JL (2005) Assimilation of nitrogen from nitrite and trinitrotoluene in Pseudomonas putida JLR11. J Bacteriol 187:396–399. doi:10.1128/JB.187.1.396-399.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Čėnas N, Nemeikaitė-Čėnienė A, Marozienė A, Šarlauskas J, Vilutienė V, Baublys J (2001) Explosives as toxic environmental pollutants: the level of contamination, toxicity and its mechanisms. EUExcert (Certifying Expertise in European Explosives Sector) 1–8

  7. Claus H, Bausinger T, Lehmler I, Perret N, Fels G, Dehner U, Preuss J, König H (2007) Transformation of 2,4,6-trinitrotoluene (TNT) by Raoultella terrigena. Biodegradation 18:27–35. doi:10.1007/s10532-005-9033-7

    Article  CAS  PubMed  Google Scholar 

  8. Duque E, Haidour A, Godoy F, Ramos JL (1993) Construction of a Pseudomonas hybrid strain that mineralizes 2,4,6-trinitrotoluene. J Bacteriol 175:2278–2283

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Diwani GE, Rafie SE, Hawash S (2009) Degradation of 2,4,6-trinitrotoluene in aqueous solution by ozonation and multi-stage ozonation biological treatment. Int J Environ Sci Technol 6:619–628

    Article  Google Scholar 

  10. Esteve-Núñez A, Caballero A, Ramos JL (2001) Biological degradation of 2,4,6-trinitrotoluene. Microbiol Mol Biol Rev 65:335–352. doi:10.1128/MMBR.65.3.335-352.2001

    Article  PubMed Central  PubMed  Google Scholar 

  11. Fallahi S, Habibi-Rezaei M, Khayami M, Heydari R (2007) Soil decontamination of 2,4,6-trinitrotoluene by alfalfa (Medicago sativa). Pak J Biol Sci 10:4406–4412. doi:10.3923/pjbs.2007.4406.4412

    Article  CAS  PubMed  Google Scholar 

  12. Fleischmann TJ, Walker KC, Spain JC, Hughes JB, Craig AM (2004) Anaerobic transformation of 2,4,6-TNT by bovine ruminal microbes. Biochem Biophys Res Commun 314:957–963. doi:10.1016/j.bbrc.2003.12.193

    Article  CAS  PubMed  Google Scholar 

  13. Gorontzy T, Drzyzga O, Kahl MW, Bruns-Nagel D, Breitung J, von Loew E, Blotevogel KH (1994) Microbial degradation of explosives and related compounds. Crit Rev Microbiol 20:265–284. doi:10.3109/10408419409113559

    Article  CAS  PubMed  Google Scholar 

  14. Han S (2008) In situ bioremediation and natural attenuation of dinitrotoluenes and trinitrotoluene. Ph.D, Dissertation, Georgia Institute of Technology

    Google Scholar 

  15. Hannink N, Rosser SJ, French CE, Basran A, Murray JAH, Nicklin S, Bruce NC (2001) Phytodetoxification of TNT by transgenic plants expressing a bacterial nitroreductase. Nat Biotechnol 19:1168–1172. doi:10.1038/nbt1201-1168

    Article  CAS  PubMed  Google Scholar 

  16. Hawari J, Beaudet S, Halasz A, Thiboutot S, Ampleman G (2000) Microbial degradation of explosives: biotransformation versus mineralization. Appl Microbiol Biotechnol 54:605–618. doi:10.1007/s002530000445

    Article  CAS  PubMed  Google Scholar 

  17. Heiss G, Knackmus HJ (2002) Bioelimination of nitroaromatic compounds: immobilization versus mineralization. Curr Opin Microbiol 5:282–287. doi:10.1016/S1369-5274(02)00316-8

    Article  CAS  PubMed  Google Scholar 

  18. Jain RK, Kapur M, Labana S, Lal B, Sarma PM, Bhattacharya D, Thakur IS (2005) Microbial diversity: application of microorganisms for the biodegradation of xenobiotics. Curr Sci 89:101–112

    CAS  Google Scholar 

  19. Kahng H-Y, Lee B-U, Cho Y-S, Oh K-H (2007) Purification and characterization of the NAD(P)H-nitroreductase for the catabolism of 2,4,6-trinitrotoluene (TNT) in Pseudomonas sp. HK-6. Biotechnol Bioprocess Eng 12:433–440. doi:10.1007/BF02931067

    Article  CAS  Google Scholar 

  20. Kalafut T, Wales ME, Rastogi VK, Naumova RP, Zaripova SK, Wild JR (1998) Biotransformation patterns of 2,4,6-trinitrotoluene by aerobic bacteria. Curr Microbiol 36:45–54. doi:10.1007/s002849900278

    Article  CAS  PubMed  Google Scholar 

  21. Kalderis D, Juhasz AL, Boopathy R, Comfort S (2011) Soils contaminated with explosives: environmental fate and evaluation of state-of-the-art remediation processes. (IUPAC Technıcal Report). Pure Appl Chem 83:1407–1484

    Article  CAS  Google Scholar 

  22. Khachatryan GE, Mkrtchyan NI, Simonyan NV, Khachatryan TV, Tatikyan SS (2000) Two unidentified aerobic bacterial strains that transform 2,4,6-trinitrotoluene. World J Microbiol Biotechnol 16:393–395. doi:10.1023/A:1008980425334

    Article  CAS  Google Scholar 

  23. Kim H-Y, Bennett G, Song H-G (2002) Degradation of 2,4,6-trinitrotoluene by Klebsiella sp. isolated from activated sludge. Biotechnol Lett 24:2023–2028. doi:10.1023/A:1021127201608

    Article  CAS  Google Scholar 

  24. Kim H-Y, Song H-G (2000) Transformation of 2,4,6-trinitrotoluene by white rot fungus Irpex lacteus. Biotechnol Lett 22:969–975. doi:10.1023/A:1005636914121

    Article  CAS  Google Scholar 

  25. Kubota A, Maeda T, Nagafuchi N, Kadokami K, Ogawa HI (2008) TNT biodegradation and production of dihydroxylamino-nitrotoluene by aerobic TNT degrader Pseudomonas sp. strain TM15 in an anoxic environment. Biodegradation 19:795–805. doi:10.1007/s10532-008-9182-6

    Article  CAS  PubMed  Google Scholar 

  26. Kulkarni M, Chaudhari A (2007) Microbial remediation of nitro-aromatic compounds: an overview. J Environ Manage 85:496–512. doi:10.1016/j.jenvman.2007.06.009

    Article  CAS  PubMed  Google Scholar 

  27. Kurinenko BM, Yakovleva GY, Denivarova NA, Abreimova YV (2003) Specific toxic effects of 2,4,6-trinitrotoluene on Bacillus subtilis SK1. Appl Biochem Microbiol 39:275–278. doi:10.1023/A:1023527611310

    Article  CAS  Google Scholar 

  28. Litake GM, Joshi SG, Ghole VS (2005) TNT biotransformation potential of the clinical isolate of Salmonella typhimurium—potential ecological implications. Indian J Occup Env Med 9:29–34. doi:10.4103/0019-5278.16039

    Article  Google Scholar 

  29. Maeda T, Kadokami K, Ogava HI (2006) Characterization of 2,4,6-trinitrotoluene (TNT)-metabolizing bacteria isolated from TNT-polluted soils in the Yamada Green Zone, Kitakyushu, Japan. J Environ Biotechnol 6:33–39

    Google Scholar 

  30. Maleki N (1994) Treatment and biodegradation of high explosives: a literature review. Dissertation, University of California, Ph.D

    Google Scholar 

  31. Maloney SW, Adrian NR, Hickey RF, Heine RL (2002) Anaerobic treatment of pinkwater in a fluidized bed reactor containing GAC. J Hazard Mater 92:77–88. doi:10.1016/S0304-3894(01)00375-2

    Article  CAS  PubMed  Google Scholar 

  32. Nam SI (1997) On-site analysis of explosives in soil evaluation of thin-layer chromotography for confirmation analyte identity. Cold Reg Res Eng Lab Spec Rep 97–21

  33. Nyanhongo GS, Erlacher A, Schroeder M, Guebitz GM (2006) Enzymatic immobilization of 2,4,6-trinitrotoluene (TNT) biodegradation products onto model humic substances. Enzym Microb Technol 39:1197–1204. doi:10.1016/j.enzmictec.2006.03.004

    Article  CAS  Google Scholar 

  34. Nyanhongo GS, Aichernig N, Ortner M, Steiner W, Guebitz GM (2008) A novel environmentally friendly 2,4,6-trinitrotoluene (TNT) based explosive. Maced J Chem Chem Eng 27:107–116

    CAS  Google Scholar 

  35. Nyanhongo GS, Aichernig N, Ortner M, Steiner W, Guebitz GM (2009) İncorporation of 2,4,6-trinitrotoluen (TNT) transforming bacteria into explosive formulations. J Hazard Mater 165:285–290. doi:10.1016/j.jhazmat.2008.09.107

    Article  CAS  PubMed  Google Scholar 

  36. Oh B, Shea PJ, Drijber RA, Vasilyeva GK, Sarath G (2003) TNT biotransformation and detoxification by a Pseudomonas aeruginosa strain. Biodegradation 14:309–319. doi:10.1023/A:102565325834

    Article  CAS  PubMed  Google Scholar 

  37. Oh K-H, Kim Y-J (1998) Degradation of explosive 2,4,6-trinitrotoluene by s-triazine degrading bacterium isolated from contaminated soil. Bull Environ Contam Toxicol 61:702–708. doi:10.1007/s001289900818

    Article  PubMed  Google Scholar 

  38. Pak JW, Knoke KL, Noguera DR, Fox BG, Chambliss GH (2000) Transformation of 2,4,6-trinitrotoluene by purified xenobiotic reductase B from Pseudomonas fluorescens I-C. Appl Environ Microbiol 66:4742–4750. doi:10.1128/AEM.66.11.4742-4750.2000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Rahal AG, Moussa LA (2011) Degradation of 2,4,6-trinitrotoluene (TNT) by soil bacteria isolated from TNT contaminated soil. Aust J Basic Appl Sci 5:8–17

    CAS  Google Scholar 

  40. Rajan J, Valli K, Perkins RE, Sariaslani FS, Barns SM, Reysenbach AL, Rehm S, Ehringer M, Pace NR (1996) Mineralization of 2,4,6-trinitrophenol (picric acid): characterization and phylogenetic identification of microbial strains. J Ind Microbiol Biotechnol 16:319–324. doi:10.1007/BF01570041

    CAS  Google Scholar 

  41. Roldán MD, Pérez-Reinado E, Castillo F, Moreno-Vivián C (2008) Reduction of polynitroaromatic compounds: the bacterial nitroreductases. FEMS Microbiol Rev 32:474–500. doi:10.1111/j.1574-6976.2008.00107.x

    Article  PubMed  Google Scholar 

  42. Seth-Smith HMB (2002) Microbial degradation of RDX. Dissertation, University of Cambridge, Ph.D

    Google Scholar 

  43. Schackmann A, Müller R (1991) Reduction of nitroaromatic compounds by different Pseudomonas species under aerobic conditions. Appl Microbiol Biotechnol 34:809–813. doi:10.1007/BF00169355

    CAS  Google Scholar 

  44. Sheikh KS (2006) Kinetics of 2,4,6-trinitrotolene reduction by Pseudomonas putida. University of Ohio, Msc. Dissertation

    Google Scholar 

  45. Spain JC (1995) Biodegradation of nitroaromatic compounds. Annu Rev Microbiol 49:523–555. doi:10.1146/annurev.micro.49.1.523

    Article  CAS  PubMed  Google Scholar 

  46. Tope AM, Jamil K, Baggi TR (1999) Transformation of 2,4,6-trinitrotoluene (TNT) by immobilized and resting cells of Arthrobacter sp. J Hazard Subst Res 2:3–9

    Google Scholar 

  47. Ullah H, Shah AA, Hasan F, Hameed A (2010) Biodegradation of trinitrotoluene by immobilized Bacillus SP. YRE1. Pak J Bot 42:3357–3367

    CAS  Google Scholar 

  48. Uzer A (2004) Basic and derivative spectrophotometric determination of some nitrophenols. University of Istanbul, Msc Dissertation

    Google Scholar 

  49. Zhang C, Bennett GN (2005) Biodegradation of xenobiotics by anaerobic bacteria. App Microbiol Biotechnol 67:600–618. doi:10.1007/s00253-004-1864-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by Cukurova University, Institute of Science, Scientific Research Project Unit. We thank Mechanical and Chemical Industry Corporation, Rocket & Explosive Factor for help on obtaining TNT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Aysun Mercimek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mercimek, H.A., Dincer, S., Guzeldag, G. et al. Aerobic Biodegradation of 2,4,6-Trinitrotoluene (TNT) by Bacillus cereus İsolated from Contaminated Soil. Microb Ecol 66, 512–521 (2013). https://doi.org/10.1007/s00248-013-0248-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0248-6

Keywords

Navigation