Skip to main content
Log in

A 2-Year Assessment of the Main Environmental Factors Driving the Free-Living Bacterial Community Structure in Lake Bourget (France)

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Despite the considerable attention that has been paid to bacterioplankton over recent decades, the dynamic of aquatic bacterial community structure is still poorly understood, and long-term studies are particularly lacking. Moreover, how the environment governs diversity patterns remains a key issue in aquatic microbial ecology. In this study, we used denaturing gradient gel electrophoresis of PCR-amplified partial 16S rRNA gene fragments and multivariable statistical approaches to explore the patterns of change in the free-living bacterial community in the mesotrophic and mono-meromictic Lake Bourget (France). A monthly sampling was conducted over two consecutive years (2007 and 2008) and at two different depths characterizing the epi- and hypolimnion of the lake (2 and 50 m, respectively). Temporal shifts in the bacterial community structure followed different patterns according to depth, and no seasonal reproducibility was recorded from 1 year to the next. Our results showed that the bacterial community structure displayed lower diversity at 2 m (22 bands) compared to 50 m (32 bands) and that bacterial community structure dynamics followed dissimilar trends between the two depths. At 2 m, five shifts in the bacterial community structure occurred, with the temporal scale varying between 2 and 8 months whereas, at 50 m, four shifts in the bacterial community structure took place at 50 m, with the temporal scale fluctuating between 3 and 13 months. More than 60% of the bacterial community structure variance was explained by seven variables at 2 m against eight at 50 m. Nutrients (PO4-P, NH4-N and NO3-N) and temperature were responsible for 49.6% of the variance at 2 m whereas these nutrients, with dissolved oxygen and chlorophyll a accounting for 59.6% of the variance at 50 m. Grazing by ciliates played also a critical role on the bacterial community structure at both depths. Our results suggest that the free-living bacterial community structure in the epi- and hypolimnion of Lake Bourget is mainly driven by combined, but differently weighted, top-down and bottom-up factors at 2 and 50 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Boucher D, Jardillier L, Debroas D (2005) Succession of bacterial community composition over two consecutive years in two aquatic systems: a natural lake and a lake-reservoir. FEMS Microbiol Ecol 55:79–97

    Article  Google Scholar 

  2. Caron DA (1983) Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescence microscopy, and comparison with other procedure. Appl Environ Microbiol 46:491–498

    PubMed  CAS  Google Scholar 

  3. Casamayor EO, Schäfer H, Baňeras L, Pedrόs-Aliό C (2000) Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulfurous lakes: comparison by microscopy and denaturing gradient gel electrophoresis. Appl Environ Microbiol 66:499–508

    Article  PubMed  CAS  Google Scholar 

  4. Choi K, Kim B, Lee UH (2001) Characteristic of dissolved organic carbon in three layers of a deep reservoir, Lake Soyang, Korea. Int Rev Hydrobiol 86:63–76

    Article  CAS  Google Scholar 

  5. Chrzanowski TH, Sterner RW, Elser JJ (1995) Nutrient enrichment and nutrient regeneration stimulate bacterioplankton growth. Microb Ecol 29:221–230

    Article  Google Scholar 

  6. Clarke KR, Warwick RW (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. Primer-E, Plymouth

    Google Scholar 

  7. Cole JJ, Findlay S, Pace ML (1988) Bacterial production in freshwater and saltwater ecosystems: a cross system overview. Mar Ecol Prog Ser 43:1–10

    Article  Google Scholar 

  8. Comte J, Jacquet S, Viboud S, Fontvieille D, Millery A, Paolini G, Domaizon I (2006) Microbial community structure and dynamics in the largest natural French lake (Lake Bourget). Microb Ecol 52:72–89

    Article  PubMed  CAS  Google Scholar 

  9. Crump BC, Peranteau C, Beckingham B, Cornwell JC (2007) Respiratory succession and community succession of bacterioplankton in seasonally anoxic estuarine waters. Appl Environ Microbiol 44:6802–6810

    Article  Google Scholar 

  10. De Wever A, Muylaert K, Van der Gucht K, Pirlot S, Coquyt C, Descy JP, Plisnier PD, Vyverman W (2005) Bacterial community composition in Lake Tanganyika: vertical and horizontal heterogeneity. Appl Environ Microbiol 71:5029–5037

    Article  PubMed  Google Scholar 

  11. Dorigo U, Volatier L, Humbert JF (2005) Molecular approaches to the assessment of biodiversity in aquatic microbial communities. Water Res 39:2207–2218

    Article  PubMed  CAS  Google Scholar 

  12. Dorigo U, Fontvieille D, Humbert JF (2006) Spatial variability in the abundance and composition of the free-living bacterioplankton community in the pelagic zone of Lake Bourget (France). FEMS Microbiol Ecol 58:109–119

    Article  PubMed  CAS  Google Scholar 

  13. Fenchel T, King G, Blackburn TH (1998) Bacterial biogeochemistry: the ecophysiology of mineral cycling. Academic, New York

    Google Scholar 

  14. Fromin N, Hamelin J, Tarnawski S, Roesti D, Jourdain-Miserez K, Forestier N, Teyssier-Cuvelle S, Gillet F, Aragno M, Rossi P (2002) Statistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patterns. Environ Microbiol 4:634–643

    Article  PubMed  CAS  Google Scholar 

  15. Fuhrman JA, Hagström A (2008) Bacterial and Archaeal community structure and its patterns. In: Kirchman DL (ed) Microbial ecology of the oceans, 2nd edn. Wiley-Liss, New York, pp 45–90

    Chapter  Google Scholar 

  16. Gasol JM (1994) A framework for the assessment of top-down vs. bottom-up control of heterotrophic nanoflagellate abundance. Mar Ecol Prog Ser 113:291–300

    Article  Google Scholar 

  17. Gasol JM, Pedros-Alio C, Vaqué D (2002) Regulation of bacterial assemblages in oligotrophic plankton systems, in: results from experimental and empirical approaches. Anton Leeuw 81:435–452

    Article  CAS  Google Scholar 

  18. Humbert JF, Dorigo U, Cecchi P, Le Berre B, Debroas D, Bouvy M (2009) Comparison of the structure and composition of bacterial communities from temperate and tropical freshwater ecosystems. Environ Microbiol 11:2339–2350

    Article  PubMed  CAS  Google Scholar 

  19. Jacquet S, Briand JF, Leboulanger C, Avois-Jacquet C, Oberhaus L, Tassin B, Vinçon-Leite B, Paolini G, Druart JC, Anneville O, Humbert JF (2005) The proliferation of the toxic cyanobacterium Planktothrix rubescens following restoration of the largest natural French lake (Lac du Bourget). Harmful Algae 4:651–672

    Article  Google Scholar 

  20. Jacquet S, Domaizon I, Personnic S, Pradeep Ram AS, Hedal M, Duhamel S, Sime-Ngando T (2005) Estimates of protozoan- and viral-mediated mortality of bacterioplankton in Lake Bourget (France). Freshw Biol 50:627–645

    Article  CAS  Google Scholar 

  21. Jacquet S, Druart JC, Perga ME, Girel C, Paolini G, Lazzarotto J, Domaizon I, Berdjeb L, Humbert JF, Perney P, Laine L, Kerrien F (2008) Suivi de la qualité des eaux du lac du Bourget pour l’année 2007. Rapport 2008, p 16

  22. Jardillier L, Boucher D, Personnic S, Jacquet S, Thénot A, Sargos D, Amblard C, Debroas D (2005) Relative importance of nutrients and mortality factors on prokaryotic community composition in two lakes of different trophic status: microcosm experiments. FEMS Microbiol Ecol 53:429–443

    Article  PubMed  CAS  Google Scholar 

  23. Kopczynski ED, Bateson MM, Ward DM (1994) Recognition of chimeric small-subunit ribosomal DNAs composed of genes from uncultivated microorganisms. Appl Environ Microbiol 60:746–748

    PubMed  CAS  Google Scholar 

  24. Kruskal JB (1964) Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29:1–27

    Article  Google Scholar 

  25. Kruskal JB, Wish M (1978) Multidimensional scaling. Sage University Paper series on quantitative applications in the social sciences, number 07-011. Sage, Newbury Park

    Google Scholar 

  26. Lindström ES (1998) Bacterioplankton community composition in a boreal forest lake. FEMS Microbiol Ecol 27:163–174

    Article  Google Scholar 

  27. Lindström ES (2000) Bacterioplankton community composition in five lakes differing in trophic status and humic content. Microb Ecol 40:104–113

    PubMed  Google Scholar 

  28. Lindström ES (2001) Investigating influential factors on bacterioplankton community composition: results from field study of five mesotrophic lakes. Microb Ecol 42:598–605

    Article  PubMed  Google Scholar 

  29. Lindström ES, Kamst-Van Agterveld MP, Zwart G (2005) Distribution of typically freshwater bacterial groups is associated with pH, temperature, and lake water retention time. Appl Environ Microbiol 71:8201–8206

    Article  PubMed  Google Scholar 

  30. Marzorati M, Wittebolle L, Boon N, Daffonchio D, Verstraete W (2008) How to get more out of molecular fingerprints? Practical tools for microbial ecology. Environ Microbiol 10:1571–1581

    Article  PubMed  CAS  Google Scholar 

  31. Muylaert K, Van der Gucht K, Vloemans N, De Meester L, Gillis M, Vyverman W (2002) Relationship between bacterial community composition and bottom-up versus top-down variables in four eutrophic shallow lakes. Appl Environ Microbiol 68:4740–4750

    Article  PubMed  CAS  Google Scholar 

  32. Muyzer G, DeWaad EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  33. Nelson CE (2009) Phenology of high-elevation pelagic bacteria: the roles of meteorologic variability, catchment inputs and thermal stratification in structuring communities. The ISME Journal 3:13–30

    Article  PubMed  CAS  Google Scholar 

  34. Peng X, Fanxiang K, Huansheng C, Min Z (2007) Relationship between bacterioplankton and phytoplankton community dynamics during late spring and early summer in Lake Taihu, China. Acta Ecol Sin 27:1696–1702

    Article  Google Scholar 

  35. Personnic S, Domaizon I, Dorigo U, Berdjeb L, Jacquet S (2009) Seasonal and spatial variability of virio-, bacterio-, and picophytoplanktonic abundances in three peri-alpine lakes. Hydrobiol 627:99–116

    Article  Google Scholar 

  36. Personnic S, Domaizon I, Sime-Ngando T, Jacquet S (2009) Seasonal variations of microbial abundances and virus- versus flagellate-induced mortality of picoplancton in three peri-alpine lakes. J Plankton Res 31:1161–1177

    Article  Google Scholar 

  37. Ramette A (2007) Multivariate analyses in microbial ecology. FEMS Microbiol Ecol 62:142–160

    Article  PubMed  CAS  Google Scholar 

  38. Rooney-Varga JN, Giewat MW, Savin MC, LeGresley M, Martin JL (2005) Links between phytoplankton and bacterial community dynamics in a coastal marine environment. Microb Ecol 49:163–175

    Article  PubMed  CAS  Google Scholar 

  39. Rubin MA, Leff LG (2007) Nutrients and other abiotic factors affecting bacterial communities in an Ohio River (USA). Microb Ecol 54:374–383

    Article  PubMed  Google Scholar 

  40. Schauer M, Balagué V, Pedrós-Alió C, Massana R (2003) Seasonal changes in the taxonomic composition of bacterioplankton in coastal oligotrophic system. Aquat Microb Ecol 31:163–174

    Article  Google Scholar 

  41. Schwalbach MS, Hewson I, Fuhrman JA (2004) Viral effects on bacterial community composition in marine plankton microcosms. Aquat Microb Ecol 34:117–127

    Article  Google Scholar 

  42. Sekiguchi H, Tomioka N, Nakahara T, Uchiyama H (2001) A single band does not always represent single bacterial strains in denaturing gradient gel electrophoresis analysis. Biotechnol Lett 23:1205–1208

    Article  CAS  Google Scholar 

  43. Sekiguchi H, Masataka M, Nakahara T, Xu B, Uchiyama H (2002) Succession of bacterial community structure along the Changjiang River determined by denaturing gradient gel electrophoresis and clone library analysis. Appl Environ Microbiol 68:5142–5150

    Article  PubMed  CAS  Google Scholar 

  44. Shade A, Kent AD, Jones SE, Newton RJ, Triplett EW, McMahon KD (2007) Interannual dynamics and phenology of bacterial communities in a eutrophic lake. Limnol Oceanogr 52:487–494

    Article  CAS  Google Scholar 

  45. Shade A, Jones SE, McMahon KD (2008) The influence of habitat heterogeneity on freshwater bacterial community composition and dynamics. Environ Microbiol 10:1057–1067

    Article  PubMed  CAS  Google Scholar 

  46. Sime-Ngando T, Bourdier G, Amblard C, Pinel-Alloul B (1991) Short-term variations in specific biovolumes of different bacterial forms in aquatic ecosystems. Microb Ecol 21:211–226

    Article  Google Scholar 

  47. Tadonléké RD, Planas D, Lucotte M (2005) Microbial food webs in boreal humic lakes and reservoirs: ciliates as a major factor related to the dynamics of the most active bacteria. Microb Ecol 49:325–341

    Article  PubMed  Google Scholar 

  48. ter Braak CJF (1990) Interpreting canonical correlation analysis through biplots of structure correlations and weight. Psychometrika 55:519–531

    Article  Google Scholar 

  49. ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca

    Google Scholar 

  50. Tijdens M, Hoogveld HL, Kamst-van Agterveld MP, Simis SG, Baudoux AC, Laanbroek HJ, Gons HJ (2008) Population dynamics and diversity of viruses, bacteria and phytoplankton in a shallow eutrophic lake. Microb Ecol 56:29–42

    Article  PubMed  Google Scholar 

  51. Uthermöl H (1958) Zur Vervollkommong der quantitativen phytoplankton-mothodik. Mitt Int Ver Limnol 9:38

    Google Scholar 

  52. Van der Gucht K, Sabbe K, De Meester L, Vloemans N, Zwart G, Gillis M, Vyverman W (2001) Contrasting bacterioplankton community composition and seasonal dynamics in two neighbouring hypertrophic freshwater lakes. Environ Microbiol 3:680–690

    Article  Google Scholar 

  53. Yannarell AC, Kent AD, Lauster GH, Kratz TK, Triplett EW (2003) Temporal patterns in bacterial communities in three temperate lakes of different trophic status. Microb Ecol 46:391–405

    Article  PubMed  CAS  Google Scholar 

  54. Yannarell AC, Triplett EW (2005) Geographic and environmental sources of variation in lake bacterial community composition. Appl Environ Microbiol 71:227–239

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank J.C. Hustache, P. Chifflet, P. Perney J. Lazzaroto, A. Millery, J.N. Avriller, and J.F. Humbert for technical assistance in sampling and analyses, and J. Kirkman for correcting and improving the English of the manuscript. L. Berdjeb was granted by French–Algerian cooperation fellowship completed by INRA. This study is a contribution to the ANR AQUAPHAGE project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphan Jacquet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berdjeb, L., Ghiglione, J.F., Domaizon, I. et al. A 2-Year Assessment of the Main Environmental Factors Driving the Free-Living Bacterial Community Structure in Lake Bourget (France). Microb Ecol 61, 941–954 (2011). https://doi.org/10.1007/s00248-010-9767-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-010-9767-6

Keywords

Navigation