Skip to main content
Log in

The Effect of Copper on The Structure of the Ammonia-Oxidizing Microbial Community in an Activated Sludge Wastewater Treatment Plant

  • Brief Report
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Molecular approaches based on both whole-cell and extracted DNA were applied to assess chronic and acute effects of copper on the ammonia oxidizing bacteria (AOB) community in an activated sludge system. The ammonia monooxygenase amoA gene was chosen as the functional marker to evaluate changes in the AOB community. Using in situ polymerase chain reaction, we were able to visualize the peripheric distribution of the amoA gene-possessing bacteria in activated sludge flocs. The AOB biomass content was constant in both chronic and acute toxicity experiments, but the ammonia oxidizing activity, measured as ammonia uptake rate, was different. The AOB community structural changes due to the copper presence were evaluated by multivariate analysis of the DGGE bands profiles. The chronic contamination caused a change in the AOB community compared to the control. In contrast, acute inputs led to a temporary change in the AOB community, after which the community was similar to the control. Recovery after acute intoxication was achieved after 72 h. The present study reports on the effects of chronic and acute copper contamination on the ammonia uptake ability of the AO microorganisms and the structure of the AOB community in a wastewater system and, as a consequence, gives indications on the response of wastewater plants under similar conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

References

  1. 91/271/EC, Concerning urban waste treatment. 1991, Council Directive

  2. 2000/60/EC, Establishing a framework for Community action in the field of water policy, EuropeanParliamen and Council, 2000

  3. Avrahami S, Conrad R (2003) Patterns of community change among ammonia oxidizers in meadow soils upon long-term incubation at different temperatures. Appl Environ Microb 69(10):6152–6164

    Article  CAS  Google Scholar 

  4. Bothe H, Jost G, Schloter M, Ward BB, Witzel K-P (2000) Molecular analysis of ammonia oxidation and denitrification in natural environments. FEMS Microbiol Rev 24(5):673–690

    Article  PubMed  CAS  Google Scholar 

  5. Broos K, Uyttebroek M, Mertens J, Smolders E (2004) A survey of symbiotic nitrogen fixation by white clover grown on metal contaminated soils. Soil Biol Biochem 36(4):633–640

    Article  CAS  Google Scholar 

  6. Bundy JG, Paton GI, Campbell CD (2004) Combined microbial community level and single species biosensor responses to monitor recovery of oil polluted soil. Soil Biol Biochem 36(7):1149–1159

    Article  CAS  Google Scholar 

  7. Cabrera G, Pérez R, Gómez JM, Ábalos A, Cantero D (2006) Toxic effects of dissolved heavy metals on Desulfovibrio vulgaris and Desulfovibrio sp. strains. J Hazard Mater 135(1–3):40–46

    Article  PubMed  CAS  Google Scholar 

  8. Chang LW (1996) In: Chang LW, Magos L, Suzuki T (eds) Toxicology of Metals, vol. I. CRC Lewis, New York

    Google Scholar 

  9. Chen F, Dustman WA, Hodson RE (1999) Microscopic detection of the toluene dioxygenase gene and its expression inside bacterial cells in seawater using prokaryotic in situ PCR. Hydrobiologia 401:131–138

    Article  CAS  Google Scholar 

  10. Demanou J, Sharma S, Weber A, Wilke B-M, Njine T, Monkiedje A, Munch JC, Schloter M (2006) Shifts in microbial community functions and nitrifying communities as a result of combined application of copper and mefenoxam. FEMS Microbiol Lett 260(1):55–62

    Article  PubMed  CAS  Google Scholar 

  11. Dumestre A, Sauvé S, McBride M, Baveye P, Berthelin J (1999) Copper speciation and microbial activity in long-term contaminated soils. Arch Environ Contam Toxicol 36:124–131

    Article  PubMed  CAS  Google Scholar 

  12. Ehrlich HL (1997) Microbes and metals. Appl Microbiol Biotechnol 48(6):687–692

    Article  CAS  Google Scholar 

  13. Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30(10–11):1389–1414

    Article  CAS  Google Scholar 

  14. Harms G, Layton A, Dionisi H, Gregory I, Garrett V, Hawkins S, Robinson K, Sayler G (2003) Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ Sci Technol 37(2):343–351

    Article  PubMed  CAS  Google Scholar 

  15. Hoshino T, Noda N, Tsuneda S, Hirata A, Inamori Y (2001) Direct detection by in situ PCR of the amoA gene in biofilm resulting from a nitrogen removal process. Appl Environ Microb 67(11):5261–5266

    Article  CAS  Google Scholar 

  16. Hoshino T, Tsuneda S, Hirata A, Inamori Y (2003) In situ PCR for visualizing distribution of a functional gene “amoA” in a biofilm regardless of activity. J Biotechnol 105(1–2):33–40

    Article  PubMed  CAS  Google Scholar 

  17. Hu Z, Chandran K, Grasso D, Smets BF (2004) Comparison of nitrification inhibition by metals in batch and continuous flow reactors. Water Res 38(18):3949–3959

    Article  PubMed  CAS  Google Scholar 

  18. Lawlor K, Knight BP, Barbosa-Jefferson VL, Lane PW, Lilley AK, Paton GI, McGrath SP, O’Flaherty SM, Hirsch PR (2000) Comparison of methods to investigate microbial populations in soils under different agricultural management. FEMS Microbiol Ecol 33(2):129–137

    Article  CAS  Google Scholar 

  19. Layton AC, Dionisi H, Kuo H-W, Robinson KG, Garrett VM, Meyers A, Sayler GS (2005) Emergence and competitive dominant ammonia-oxidizer bacterial populations in a full-scale industrial. Appl Environ Microb 71(2):1105–1108

    Article  CAS  Google Scholar 

  20. Li B, Bishop P (2003) Structure–function dynamics and modeling analysis of the micro-environment of activated sludge floc. Water Sci Technol 47(11):267–273

    PubMed  CAS  Google Scholar 

  21. Li B, Bishop PL (2004) Micro-profiles of activated sludge floc determined using microelectrodes. Water Res 38(5):1248–1258

    Article  PubMed  CAS  Google Scholar 

  22. Li Z, Xu J, Tang C, Wu J, Muhammad A, Wang H (2006) Application of 16S rDNA-PCR amplification and DGGE fingerprinting for detection of shift in microbial community diversity in Cu-, Zn-, and Cd-contaminated paddy soils. Chemosphere 62(8):1374–1380

    Article  PubMed  CAS  Google Scholar 

  23. Manz W, Amann R, Ludwig W, Wagner M, Schleifer K-H (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst Appl Microbiol 15:593–600

    Google Scholar 

  24. Nicolaisen MH, Ramsing NB (2002) Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J Microbiol Methods 50(2):189–203

    Article  PubMed  CAS  Google Scholar 

  25. Nies D (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51(6):730–750

    Article  PubMed  CAS  Google Scholar 

  26. O’Mullan GD, Ward BB (2005) Relationship of temporal and spatial variabilities of ammonia-oxidizing bacteria to nitrification rates in Monterey Bay, California. Appl Environ Microbiol 71(2):697–705

    Article  PubMed  CAS  Google Scholar 

  27. Principi P, Villa F, Bernasconi M, Zanardini E (2006) Metal toxicity in municipal wastewater activated sludge investigated by multivariate analysis and in situ hybridization. Water Res 40(1):99–106

    Article  PubMed  CAS  Google Scholar 

  28. Purkhold U, Pommerening-Röser A, Juretschko S, Schmid MC, Koops H-P, Wagner M (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66(12):5368–5382

    Article  PubMed  CAS  Google Scholar 

  29. Rajapaksha RMCP, Tobor-Kapłon MA, Bååth E (2004) Metal toxicity affects fungal and bacterial activities in soil differently. Appl Environ Microbiol 70:5

    Article  Google Scholar 

  30. Ranalli G, Alfano G, Belli C, Lustrato G, Colombini MP, Bonaduce I, Zanardini E, Abbruscato P, Cappitelli F, Sorlini C (2005) Biotechnology applied to cultural heritage: biorestoration of frescoes using viable bacterial cells and enzymes. J Appl Microbiol 98(1):73–83

    Article  PubMed  CAS  Google Scholar 

  31. Ranjard L, Echairi A, Nowak V, Lejon DPH, Nouaim R, Chaussod R (2006) Field and microcosm experiments to evaluate the effects of agricultural Cu treatment on the density and genetic structure of microbial communities in two different soils. FEMS Microbiol Ecol 58(2):303–315

    Article  PubMed  CAS  Google Scholar 

  32. Rasband W (2008) ImageJ 1997–2007. U.S. National Institutes of Health, Bethesda, Maryland, USA

    Google Scholar 

  33. Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63(12):4704–4712

    PubMed  CAS  Google Scholar 

  34. Sauvé S, Dumestre A, McBride M, Gillett JW, Berthelin J, Hendershot W (1999) Nitrification potential in field-collected soils contaminated with Pb or Cu. Appl Soil Ecol 12(1):29–39

    Article  Google Scholar 

  35. Smit E, Leeflang P, Wernars K (1997) Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis. FEMS Microbiol Ecol 23(3):249–261

    Article  CAS  Google Scholar 

  36. Tobor-Kapłon M, Bloem J, de Ruiter P (2006) Functional stability of microbial communities from long-term stressed soils to additional disturbance. Environ Toxicol Chem 25(8):1993–1939

    Article  PubMed  Google Scholar 

  37. Turpeinen R, Kairesalo T, Häggblom MM (2004) Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils. FEMS Microbiol Ecol 47(1):39–50

    Article  CAS  Google Scholar 

  38. Wang Y, Shi J, Wang H, Lin Q, Chen X, Chen Y (2007) The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotoxicol Environ Saf 67(1):75–81

    Article  PubMed  CAS  Google Scholar 

  39. Zhang T, Fang HHP (2000) Digitization of DGGE (denaturing gradient gel electrophoresis) profile and cluster analysis of microbial communities. Biotechnol Lett 22:399–405

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela Principi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Principi, P., Villa, F., Giussani, B. et al. The Effect of Copper on The Structure of the Ammonia-Oxidizing Microbial Community in an Activated Sludge Wastewater Treatment Plant. Microb Ecol 57, 215–220 (2009). https://doi.org/10.1007/s00248-008-9432-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-008-9432-5

Keywords

Navigation