Skip to main content
Log in

Rhizobial Resource Associated with Epidemic Legumes in Tibet

  • Original Article
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

A total of 128 bacterial test strains originated from Astragalus, Caragana, Gueldenstaedtia, Medicago, Melilotus, Oxytropis, Trifolium, and Vicia grown in Tibet were characterized phenotypically and genomically. Based upon the consensus of grouping results, they were identified as 16 putative species. Twenty-five test strains belonging to seven putative species of Agrobacterium, Bradyrhizobium, and Rhizobium might be nonsymbiotic bacteria and the remaining 103 test strains were symbiotic bacteria belonging to Mesorhizobium, Rhizobium, and Sinorhizobium meliloti. Although no novel taxon was detected in the symbiotic bacteria, several characters including the alkaliphilic psychrotolerance revealed that the Tibetan rhizobia could be ecotypes adapted to the local conditions. The results also demonstrated that frequent lateral transfer of symbiotic genes might have happened in the Tibetan rhizobia since nodC genes similar to that of S. meliloti were found in several Rhizobium test strains and all the Mesorhizobium species had very similar nodC genes despite their genomic background. All of these findings demonstrated that the Tibetan rhizobia were an important resource for further studies on rhizobial ecology and application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Aguilar OM, Lopez MV, Riccillo PM (2001) The diversity of rhizobia nodulating beans in Northwest Argentina as a source of more efficient inoculant strains. J Biotechnol 91:181–188

    Article  PubMed  CAS  Google Scholar 

  2. Bogino P, Banchio E, Bonfiglio C, Giordano W (2008) Competitiveness of a Bradyrhizobium sp. strain in soils containing indigenous rhizobia. Curr Microbiol 56:66–72

    Article  PubMed  CAS  Google Scholar 

  3. de Lajudie P, Willems A, Nick G, Moreira F, Molouba F, Hoste B, Torck U, Neyra M, Collins MD, Lindström K, Dreyfus B, Gillis M (1998) Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. Int J Syst Bacteriol 48:369–382

    PubMed  Google Scholar 

  4. de Lajudie P, Willems A, Nick G, Mohamed TS, Torck U, Filali-Maltouf A, Kersters K, Dreyfus B, Lindström K, Gillis M (1999) Agrobacterium bv. 1 strains isolated from nodules of tropical legumes. Syst Appl Microbiol 22:119–132

    Google Scholar 

  5. Diouf D, Samba-Mbaye R, Lesueur D, Ba AT, Dreyfus B, de Lajudie P, Neyra M (2007) Genetic diversity of Acacia seyal Del. rhizobial populations indigenous to Senegalese soils in relation to salinity and pH of the sampling sites. Microb Ecol 54:553–566

    Article  PubMed  CAS  Google Scholar 

  6. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631

    Article  PubMed  CAS  Google Scholar 

  7. Gao JL, Sun JG, Li Y, Wang ET, Chen WX (1994) Numerical taxonomy and DNA relatedness of tropical rhizobia isolated from Hainan province of China. Int J Syst Bacteriol 44:151–158

    Google Scholar 

  8. Haukka K, Lindström K, Young JPW (1998) Three phylogenetic groups of nodA and nifH genes in Sinorhizobium, Mesorhizobium test strains from leguminous trees growing in Africa and Latin America. Appl Environ Microbiol 64:419–426

    PubMed  CAS  Google Scholar 

  9. Hurek T, Wagner B, Reinhold-Hurek B (1997) Identification of N2-fixing plant- and fungus-associated Azoarcus species by PCR-based genomic fingerprints. Appl Environ Microbiol 63:4331–4339

    PubMed  CAS  Google Scholar 

  10. Kan FL, Chen ZY, Wang ET, Tian CF, Sui XH, Chen WX (2007) Characterization of symbiotic and endophytic bacteria isolated from root nodules of herbaceous legumes grown in Qinghai–Tibet plateau and in other zones of China. Arch Microbiol 188:103–115

    Article  PubMed  CAS  Google Scholar 

  11. Kumar S, Tamur K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinf 5:150–163

    Article  CAS  Google Scholar 

  12. Laguerre G, van Berkum P, Amarger N, Prévost D (1997) Genetic diversity of rhizobial symbionts isolated from legume species within the genera Astragalus, Oxytropis, and Onobrychis. Appl Environ Microbiol 63:4748–4758

    PubMed  CAS  Google Scholar 

  13. Li JH, Wang ET, Chen WX (2008) Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang Province of China. Soil Biol Biochem 40:238–246

    Article  CAS  Google Scholar 

  14. Mhamdi R, Mrabet M, Laguerre G, Tiwari R, Aouani ME (2005) Colonization of Phaseolus vulgaris nodules by Agrobacterium-like strains. Can J Microbiol 51:105–111

    Article  PubMed  CAS  Google Scholar 

  15. Moulin L, Munive A, Dreyfus B, Boivin-Masson C (2001) Nodulation of legumes by members of the ß-subclass of proteobacteria. Nature 411:948–950

    Article  PubMed  CAS  Google Scholar 

  16. Moulin L, Béna G, Boivin-Masson C, Stepkowski T (2004) Phylogenetic analyses of symbiotic nodulation genes support vertical and lateral gene co-transfer within the Bradyrhizobium genus. Mol Phylogenet Evol 30:720–732

    Article  PubMed  CAS  Google Scholar 

  17. Mrabet M, Mnasri B, Romdhane SB, Laguerre G, Aouani ME, Mhamdi R (2006) Agrobacterium strains isolated from root nodules of common bean specifically reduce nodulation by Rhizobium gallicum. FEMS Microbiol Ecol 56:304–309

    Article  PubMed  CAS  Google Scholar 

  18. Ni J (2000) A simulation of biomes on the Tibetan plateau and their responses to global climate change. Mount Res Develop 20:80–89

    Article  Google Scholar 

  19. Normand P, Lapierre P, Tisa LS, Gogarten JP, Alloisio N, Bagnarol E, Bassi CA, Berry AM, Bickhart DM, Choisne N, Couloux A, Cournoyer B, Cruveiller S, Daubin V, Demange N, Francino MP, Goltsman E, Huang Y, Kopp OR, Labarre L, Lapidus A, Lavire C, Marechal J, Martinez M, Mastronunzio JE, Mullin BC, Niemann J, Pujic P, Rawnsley T, Rouy Z, Schenowitz C, Sellstedt A, Tavares F, Tomkins JP, Vallenet D, Valverde C, Wall LG, Wang Y, Medigue C, Benson DR (2007) Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Res. 17:7–15

    Article  PubMed  Google Scholar 

  20. Ponsonnet C, Nesme X (1994) Identification of Agrobacterium strains by PCR–RFLP analysis of pTi and chromosomal regions. Arch Microbiol 16:300–309

    Google Scholar 

  21. Rivas R, Velázquez E, Willems A, Vizcaíno N, Subba-Rao NS, Mateos PF, Gillis M, Dazzo FB, Martínez-Molina E (2002) A new species of Devosia that forms a unique nitrogen-fixing root-nodule symbiosis with the aquatic legume Neptunia natans (L. f.) Druce. Appl Environ Microbiol 68:5217–5222

    Article  PubMed  CAS  Google Scholar 

  22. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  23. Sarita S, Sharma PK, Priefer UB, Prell J (2005) Direct amplification of rhizobial nodC sequences from soil total DNA and comparison to nodC diversity of root nodule test strains. FEMS Microbiol Ecol 54:1–11

    Article  PubMed  CAS  Google Scholar 

  24. Sarr A, Neyra M, Ould-Houeibib MA, Ndoye I, Oihabi A, Lesueur D (2005) Characterization of native rhizobial populations present in soils from natural forests of Acacia senegal and Acacia nilotica in Trarza and Gorgol regions from Mauritania and the Senegal River Valley. Microb Ecol 50:152–162

    Article  PubMed  Google Scholar 

  25. Sneath PHA, Sokal RR (1973) Numerical taxonomy—the principles and practices of numerical classification. W. H. Freeman, San Francisco

    Google Scholar 

  26. Sy A, Giraud E, Jourand P, Garcia NY, Willems A, de Lajudie P, Prin Y, Neyra M, Gillis M, Bovinmassion C, Dreyfus B (2001) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220

    Article  PubMed  CAS  Google Scholar 

  27. Tan Z, Hurek T, Vinuesa P, Müller P, Ladha JK, Reinhold-Hurek B (2001) Specific detection of Bradyrhizobium and Rhizobium strains colonizing rice (Oryza sativa) roots by 16S–23S ribosomal DNA intergenic spacer-targeted PCR. Appl Environ Microbio 67:3655–3664

    Article  CAS  Google Scholar 

  28. Terefework Z, Kaijalainen S, Lindström K (2001) AFLP fingerprint as a tool to study the genetic diversity of Rhizobium galegae isolated from Galega orientalis and Galega officinalis. J Biotechnol 91:169–180

    Article  PubMed  CAS  Google Scholar 

  29. Thompson JD, Gibson TJ, Plewniak F, Jeanmougim F, Higgins DG (1997) The Clustal X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tool. Nucleic Acids Res 24:4867–4882

    Google Scholar 

  30. Tiwary BN, Prasad B, Ghosh A, Kumar S, Jain RK (2007) Characterization of two novel biovar of Agrobacterium tumefaciens isolated from root nodules of Vicia faba. Curr Microbiol 55:328–333

    Article  PubMed  CAS  Google Scholar 

  31. Tlusty B, Grossman JM, Graham PH (2004) Selection of rhizobia for prairie legumes used in restoration and reconstruction programs in Minnesota. Can J Microbiol 50:977–983

    Article  PubMed  CAS  Google Scholar 

  32. van Berkum P, Beyene B, Eardly BD (1996) Phylogenetic relationships among Rhizobium species nodulating the common bean (Phaseolus vulgaris L.). Int J Syst Bacteriol 46:240–244

    PubMed  Google Scholar 

  33. Vauterin L, Vauterin P (1992) Computer-aided objective comparison of electrophoresis patterns for grouping and identification of microorganisms. Eur Microbiol 1:37–41

    Google Scholar 

  34. Vincent JM (1970) A manual for the practical study of root-nodule bacteria. IBP Handbook 15. Blackwell, Oxford

    Google Scholar 

  35. Wang ET, van Berkum P, Sui XH, Beyene D, Chen WX, Martínez-Romero E (1999) Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soil and description of Mesorhizobium amorphae sp. nov. Int J Syst Bacteriol 49:51–65

    Article  PubMed  Google Scholar 

  36. Wang ET, Kan FL, Tan ZY, Toledo I, Chen WX, Martínez-Romero E (2003) Diverse Mesorhizobium plurifarium populations native to Mexican soils. Arch Microbiol 180:444–454

    Article  PubMed  CAS  Google Scholar 

  37. Wang FQ, Wang ET, Zhang YF, Chen WX (2006) Characterization of rhizobia isolated from Albizia spp. in comparison with microsymbionts of Acacia spp. and Leucaena leucocephala grown in China. Syst Appl Microbiol 29:502–517

    Article  PubMed  CAS  Google Scholar 

  38. Wang LL, Wang ET, Liu J, Chen WX (2006) Endophytic occupation by Agrobacterium tumefaciens of root nodules and roots of Melilotus dentatus. Microbial Ecol 52:436–443

    Article  Google Scholar 

  39. Weisburg WG, Barns SM, Pelletior DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed  CAS  Google Scholar 

  40. Yan XR, Chen WF, Fu JF, Lu YL, Xue CY, Sui XH, Li Y, Wang ET, Chen WX (2007) Mesorhizobium spp. are the main microsymbionts of Caragana spp. grown in Liaoning province of China. FEMS Microbiol Lett 271:265–273

    Article  PubMed  CAS  Google Scholar 

  41. Zhang G, Ma X, Niu F, Dong M, Feng H, An L, Cheng G (2007) Diversity and distribution of alkaliphilic psychrotolerant bacteria in the Qinghai–Tibet Plateau permafrost region. Extremophiles 11:415–424

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the foundation of the National Basic Research Program of China (2006CB100206) and the foundation of the National Program for Basic S&T Platform Construction (2005DKA21201-10). ETW was financially supported by the grants of SIP 20070538 and SIP 20080322 authorized by IPN, Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Xin Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1 (PDF 31.4 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, B.C., Wang, E.T., Li, Y. et al. Rhizobial Resource Associated with Epidemic Legumes in Tibet. Microb Ecol 57, 69–81 (2009). https://doi.org/10.1007/s00248-008-9397-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-008-9397-4

Keywords

Navigation