Skip to main content

Advertisement

Log in

Temporal Variations of Microbial Activity and Diversity in Marine Tropical Sediments (New Caledonia Lagoon)

  • Original Article
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Temporal variations of oxygen consumption, sensitivity to metal spiking, and microbial diversity were investigated during a one-year survey at the sediment–water interface in the tropical lagoon of New Caledonia. Sediment oxygen consumption (SOC) exhibited strong variations with time with maximum rates during February (Austral summer) and minimum values during July (cold period). SOC was strongly positively correlated with temperature, with an apparent activation energy (E a) of 41 kJ mol−1, corresponding to an apparent Q 10(20–30 °C) of 1.75. Strong short-term variations of SOC were also observed with ratios between two consecutive samplings reaching up to twofold of magnitude within one week, whereas the maximum/minimum ratio over the whole year was equal to 2.73. In most cases, metal spiking led to a strong decrease of SOC; however, in a third of sampling dates, spiking did not significantly decrease activity. These periods of apparent metal tolerance were not characterized by a particular bacterial community structure. Bacterial community structure estimated from terminal restriction fragment length polymorphism (T-RFLP) analysis exhibited strong variations over the one-year survey, and no seasonality was observed for bacterial richness. However, on average, the Whittaker similarity index between two consecutive T-RFLP profiles was above 60% suggesting a relative stability of the bacterial community structure on the short timescale with prominent T-RFs representing on average more than 67% of relative abundance occurring over most of the year, whereas other T-RFs only occurred during some periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Alongi DM (1990) The ecology of tropical soft-bottom benthic ecosystems. Oceanogr Mar Biol 28:381–496

    Google Scholar 

  2. Alongi DM (1994) Zonation and seasonality of benthic primary production and community respiration in tropical mangrove forests. Oecologia 98:320–327

    Article  Google Scholar 

  3. Berg P, Risgaard-Petersen N, Rysgaard S (1998) Interpretation of measured concentration profiles in sediment pore water. Limnol Oceanogr 43:1500–1510

    Article  CAS  Google Scholar 

  4. Boetius A, Ferdelman T, Lochte K (2000) Bacterial activity in sediments of the deep Arabian Sea in relation to vertical flux. Deep-Sea Res II 47:2835–2875

    Article  Google Scholar 

  5. Borgmann U, Norwood WP (2002) Metal bioavailability and toxicity through a sediment core. Environ Pollut 116:159–168

    Article  PubMed  CAS  Google Scholar 

  6. Boucher G, Clavier J (1990) Contribution of benthic biomass to overall metabolism in New Caledonia lagoon sediments. Mar Ecol Prog Ser 64: 271–280

    Article  CAS  Google Scholar 

  7. Clavier J, Chardy P, Chevillon C (1995) Sedimentation of particulate matter in the south-west lagoon of New Caledonia: spatial and temporal patterns. Estuar Coast Shelf Sci 40:281–294

    Article  CAS  Google Scholar 

  8. Clavier J, Garrigue C (1999) Annual sediment primary production and respiration in a large coral reef lagoon (SW New Caledonia). Mar Ecol Prog Ser 191:79–89

    Article  Google Scholar 

  9. Dalto AG, Gremare A, Dinet A, Fichet D (2006) Muddy-bottom meiofauna responses to metal concentrations and organic enrichment in New Caledonia South-West Lagoon. Estuar Coast Shelf Sci 67:629–644

    Article  Google Scholar 

  10. Danovaro R, Luna GM, Dell’Anno A, Pietrangeli B (2006) Comparison of two fingerprinting techniques, terminal restriction fragment length polymorphism and automated ribosomal intergenic spacer analysis, for determination of bacterial diversity in aquatic environments. Appl Environ Microbiol 72:5982–5989

    Article  PubMed  CAS  Google Scholar 

  11. Davison IR (1991) Environmental effects on algal photosynthesis: temperature. J Phycol 27:2–8

    Article  Google Scholar 

  12. Dollhopf SL, Hashsham SA, Tiedje JM (2001) Interpreting 16S rDNA T-RFLP data: application of self-organizing maps and principal component analysis to describe community dynamics and convergence. Microb Ecol 42:495–505

    Article  PubMed  CAS  Google Scholar 

  13. Douillet P, Ouillon S, Cordier E (2001) A numerical model for fine suspended sediment transport in the southwest lagoon of New Caledonia. Coral Reefs 20:361–372

    Article  Google Scholar 

  14. Edlund A, Jansson JK (2006) Changes in active bacterial communities before and after dredging of highly polluted Baltic Sea sediments. Appl Environ Microbiol 72:6800–6807

    Article  PubMed  CAS  Google Scholar 

  15. Edlund A, Soule T, Sjöling S, Jansson JK (2006) Microbial community structure in polluted Baltic Sea sediments. Environ Microbiol 8:223–232

    Article  PubMed  CAS  Google Scholar 

  16. Epping EHG, Khalili A, Thar R (1999) Dynamics of photosynthesis and respiration in an intertidal biofilm. Limnol Oceanogr 44:1936–1948

    Article  Google Scholar 

  17. Epping EHG, Kühl M (2000) The responses of photosynthesis and oxygen consumption to short-term changes in temperature and irradiance in a cyanobacterial mat (Ebro Delta, Spain). Environ Microbiol 2:465–474

    Article  PubMed  CAS  Google Scholar 

  18. Fernandez J-M, Ouillon S, Chevillon C, Douillet P, Fichez R, Le Gendre R (2006) A combined modelling and geochemical study of the fate of terrigenous inputs from mixed natural and mining sources in a coral reef lagoon (New Caledonia). Mar Pollut Bull 52:320–331

    Article  PubMed  CAS  Google Scholar 

  19. Fichez R, Hédouin L, Pringault O, Viret H, Warnau M (2004) Caractéristiques physico-chimiques des eaux et bioaccumulation des métaux. Rapport IRD-Goro Nickel; IRD - Goro: Nouméa, New Caledonia. IRD-GoroNickel. 33 pages

  20. Fischer H, Wanner SC, Pusch M (2002) Bacterial abundance and production in river sediments as related to the biochemical composition of particulate organic matter (POM). Biogeochemistry 61:37–55

    Article  CAS  Google Scholar 

  21. Fourçans A, de Oteyza TG, Wieland A, Sole A, Diestra E, van Bleijswijk J, Grimalt JO, Kuhl M, Esteve I, Muyzer G, Caumette P, Duran R (2004) Characterization of functional bacterial groups in a hypersaline microbial mat community (Salins-de-Giraud, Camargue, France). FEMS Microbiol Ecol 51:55–70

    Article  PubMed  CAS  Google Scholar 

  22. Fourçans A, Sole A, Diestra E, Ranchou-Peyruse A, Esteve I, Caumette P, Duran R (2006) Vertical migration of phototrophic bacterial populations in a hypersaline microbial mat from Salins-de-Giraud (Camargue, France). FEMS Microbiol Ecol 57:367–377

    Article  PubMed  CAS  Google Scholar 

  23. Gadd G (1990) Metal tolerance. In: Edwards C (Ed) Microbiology of Extreme Environments, Open University Press, Oxford. pp 179–210

  24. Garcia HE, Gordon LI (1992) Oxygen solubility in seawater—better fitting equations. Limnol Oceanogr 37:1307–1312

    CAS  Google Scholar 

  25. Glud RN, Middelboe M (2004) Virus and bacteria dynamics of a coastal sediment: implication for benthic carbon cycling. Limnol Oceanogr 49:2073–2081

    Article  Google Scholar 

  26. Grenz C, Denis L, Boucher G, Chauvaud L, Clavier J, Fichez R, Pringault O (2003) Spatial variability in sediment oxygen consumption under winter conditions in a lagoonal system in New Caledonia (South Pacific). J Exp Mar Biol Ecol 285–286:33–47

    Article  Google Scholar 

  27. Hewson I, Fuhrman JA (2006) Improved strategy for comparing microbial assemblage fingerprints. Microb Ecol 51:147–153

    Article  PubMed  Google Scholar 

  28. Hondeveld BJM, Bak RPM, van Raaphorst W, Van Duyl FC (1999) Impact of grazing by benthic eukaryotic organisms on the nitrogen sediment–water exchange in the North Sea. J Sea Res 41:255–268

    Article  Google Scholar 

  29. Isaksen MF, Bak F, Jørgensen BB (1994) Thermophilic sulfate-reducing bacteria in cold marine sediment. FEMS Microbiol Ecol 14:1–8

    Article  CAS  Google Scholar 

  30. Jacquet S, Delesalle B, Torréton JP, Blanchot J (2006) Response of phytoplankton communities to increased anthropogenic influences (southwestern lagoon, New Caledonia). Mar Ecol Prog Ser 320:65–78

    Article  CAS  Google Scholar 

  31. Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1, c2 in algae, phytoplankton and higher plants. Biochem Physiol 167:191–194

    CAS  Google Scholar 

  32. Jørgensen BB, Revsbech NP (1985) Diffusive boundary layers and the oxygen uptake of sediments and detritus. Limnol Oceanogr 30:111–122

    Article  Google Scholar 

  33. Jouon A, Douillet P, Ouillon S, Fraunie P (2006) Calculations of hydrodynamic time parameters in a semi-opened coastal zone using a 3D hydrodynamic model. Cont Shelf Res 26:1395–1415

    Article  Google Scholar 

  34. Legendre P, Legendre L (1998) Numerical Ecology. Elsevier, Amsterdam

    Google Scholar 

  35. Lorenzen CJ (1966) A method for the continuous measurement of in vivo chlorophyll concentration. Deep-Sea Res I 13:223–227

    Google Scholar 

  36. Luna GM, Dell’Anno A, Giuliano L, Danovaro R (2004) Bacterial diversity in deep Mediterranean sediments: relationship with the active bacterial fraction and substrate availability. Environ Microbiol 6:745–753

    Article  PubMed  CAS  Google Scholar 

  37. Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  PubMed  CAS  Google Scholar 

  38. Osborn M, Moore E, Timmis K (2000) An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ Microbiol 2:39–50

    Article  PubMed  CAS  Google Scholar 

  39. Osborne CA, Rees GN, Bernstein Y, Janssen PH (2006) New threshold and confidence estimates for terminal restriction fragment length polymorphism analysis of complex bacterial communities. Appl Environ Microbiol 72:1270–1278

    Article  PubMed  CAS  Google Scholar 

  40. Pereira MG, Latchford JW, Mudge SM (2006) The use of terminal restriction fragment length polymorphism (T-RFLP) for the characterisation of microbial communities in marine sediments. Geomicrobiol J 23:247–251

    Article  CAS  Google Scholar 

  41. Pinazo C, Bujan S, Douillet P, Fichez R, Grenz C, Maurin A (2004) Impact of wind and freshwater inputs on phytoplankton biomass in the coral reef lagoon of New Caledonia during the summer cyclonic period: a coupled three-dimensional biogeochemical modeling approach. Coral Reefs 23:281–296

    Article  Google Scholar 

  42. Polymenakou PN, Bertilsson S, Tselepides A, Stephanou EG (2005) Links between geographic location, environmental factors, and microbial community composition in sediments of the Eastern Mediterranean Sea. Microb Ecol 49:367–378

    Article  PubMed  CAS  Google Scholar 

  43. Rasmussen B, Gustafsson BG, Aertebjerg G, Lundsgaard C (2003) Oxygen concentration and consumption at the entrance to the Baltic Sea from 1975 to 2000. J Mar Syst 42:13–30

    Article  Google Scholar 

  44. Revsbech NP (1989) An oxygen microsensor with a guard cathode. Limnol Oceanogr 34:474–476

    CAS  Google Scholar 

  45. Sheppard C (2000) Seas at the Millenium. An environmental evaluation, vol. 2. Elsevier, Amsterdam

  46. Stevens H, Brinkhoff T, Simon M (2005) Composition of free-living, aggregate-associated and sediment surface-associated bacterial communities in the German Wadden Sea. Aquat Microbial Ecol 38:15–30

    Article  Google Scholar 

  47. Thamdrup B, Fleischer A (1998) Temperature dependence of oxygen respiration, nitrogen mineralization, and nitrification in Arctic sediments. Aquat Microbial Ecol 15:191–199

    Article  Google Scholar 

  48. Thamdrup B, Hansen JW, Jørgensen BB (1998) Temperature dependence of aerobic respiration in a coastal sediment. FEMS Microbiol Ecol 25:189–200

    Article  CAS  Google Scholar 

  49. Urakawa H, Yoshida T, Nishimura M, Ohwada K (2001) Characterization of microbial communities in marine surface sediments by terminal-restriction fragment length polymorphism (T-RFLP) analysis and quinone profiling. Mar Ecol Prog Ser 220:47–57

    Article  CAS  Google Scholar 

  50. Viret H, Pringault O, Duran R (2006) Impact of zinc and nickel on oxygen consumption of benthic microbial communities assessed with microsensors. Sci Total Environ 367:302–311

    Article  PubMed  CAS  Google Scholar 

  51. Wiebe WJ, Sheldon JWM, Pomeroy L (1992) Bacterial growth in the cold: evidence for an enhanced substrate requirements. Appl Environ Microbiol 58:359–364

    PubMed  CAS  Google Scholar 

  52. Wiebe WJ, Sheldon JWM, Pomeroy L (1993) Evidence for enhanced substrate requirement by marine mesophilic bacterial isolates at minimal growth temperatures. Microb Ecol 25:151–159

    Article  Google Scholar 

  53. Wieland A, Kühl M (1999) Short term temperature effects on oxygen and sulfide cycling in a hypersaline cyanobacterial mat (Solar Lake, Egypt). Mar Ecol Prog Ser 187:96–102

    Google Scholar 

  54. Wobus A, Bleul C, Maassen S, Scheerer C, Schuppler M, Jacobs E, Roske I (2003) Microbial diversity and functional characterization of sediments from reservoirs of different trophic state. FEMS Microbiol Ecol 46:331–347

    Article  CAS  PubMed  Google Scholar 

  55. Wright MS, Peltier GL, Stepanauskas R, McArthur JV (2006) Bacterial tolerances to metals and antibiotics in metal-contaminated and reference streams. FEMS Microbiol Ecol 58:293–302

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This project received financial supports from the French Institute for Research and Development (IRD), the French Program for Coastal Environment (PNEC), and the French Ministry of Outre-Mer. We express special thanks to the captain of the R/V Coris. Cécile Villette is thanked for her help in T-RFLP analysis. Dr. Emma Rochelle-Newall is gratefully acknowledged for her helpful criticisms on an early version of the manuscript and for English improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Pringault.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pringault, O., Duran, R., Jacquet, S. et al. Temporal Variations of Microbial Activity and Diversity in Marine Tropical Sediments (New Caledonia Lagoon). Microb Ecol 55, 247–258 (2008). https://doi.org/10.1007/s00248-007-9272-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-007-9272-8

Keywords

Navigation