Skip to main content

Advertisement

Log in

Relationship Between Testate Amoeba (Protist) Communities and Atmospheric Heavy Metals Accumulated in Barbula indica (Bryophyta) in Vietnam

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

We studied the relationships between testate amoeba communities and heavy metal (Pb, Cd, Zn, Ni, Cu, Mn, and Fe) concentrations in the moss Barbula indica sampled at 29 sites in and around the city of Hanoi (Vietnam). Our first approach was to compare the heavy metal concentrations and testate amoeba variables between the city (zone 1) and the surrounding (zone 2). Mean moss concentrations of Pb, Cd, Zn, Ni, and Cu were significantly higher and testate amoeba species richness and abundance were significantly lower in zone 1 and the abundance of eight taxa differed significantly between the two zones. We then studied the correlation between heavy metals and testate amoebae. Species richness and abundance were correlated negatively to Pb concentration. Shannon H′ was negatively correlated to both Pb and Cd. The abundance of several species was negatively correlated with Pb, Cd, Zn, and Ni; however, at the community level, Pb emerged as the only significant variable in a redundancy analysis. Our results suggest that testate amoebae are sensitive to and may be good bioindicators for heavy metal pollution, especially lead. Further research is needed to understand the causal relationships underlying the observed patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. ADB (2002) Integrated Action Plan to Reduce Vehicle Emissions in Vietnam, vol. RETA 5737. Asian Development Bank, Manila, Philippines, pp 5–51

  2. Balik, V (1991) The effect of the road traffic pollution on the communities of testate amoebae (Rhizopoda, Testacea) in Warsaw (Poland). Acta Protozool 30: 5–11

    Google Scholar 

  3. Balik, V (1995) Testate amoebae (Protozoa: Rhizopoda) from a primary mountain rain forest in the Tam-Dao region (Vietnam). Acta Soc Zool Bohem 59: 1–16

    Google Scholar 

  4. Bonnet, L (1973) Le peuplement thécamoebien des mousses corticoles. Protistologica 9: 319–338

    Google Scholar 

  5. Cash, J, Wailles, GH (1919) The British Freshwater Rhizopoda and Heliozoa, vol. IV. Ray Society, London, pp 8–68

    Google Scholar 

  6. Charman, DJ, Warner, BG (1992) Relationship between testate amoebae (Protozoa, Rhizopoda) and microenvironmental parameters on a forested peatland in Northeastern Ontario. Can J Zool 70: 2474–2482

    Article  Google Scholar 

  7. Conti, ME, Cecchetti, G (2001) Biological monitoring: lichens as bioindicators of air pollution assessment—a review. Environ Pollut 114: 471–492

    Article  PubMed  CAS  Google Scholar 

  8. Decloitre, L (1962) Le genre Euglypha Dujardin. Arch Protistenkd 106: 51–100

    Google Scholar 

  9. Decloitre, L (1976) Le genre Arcella EHRENBERG. Arch Protistenk 118: 291–309

    Google Scholar 

  10. Decloitre, L (1976) Le genre Euglypha, complément à jour au 31 décembre 1974 de la Monographie du genre parue en 1962. Arch Protistenk 118: 18–33

    Google Scholar 

  11. Deflandre, G (1936) Etude monographique sur le genre Nebela Leidy (Rhizopoda–Testacea). Ann Protistol 5: 201–286

    Google Scholar 

  12. Eddy, A (1990) A Handbook of Malesian Mosses, Leucobryaceae to Buxbaumiaceae, vol. 2. Natural History Museum Publications London, London, pp 177–178

    Google Scholar 

  13. Fernández, JA, Carballeira, A (2001) A comparison of indigenous mosses and topsoils for use in monitoring atmospheric heavy metal deposition in Galicia (northwest Spain). Environ Pollut 114: 431–441

    Article  PubMed  Google Scholar 

  14. Foissner, W (1987) Soil protozoa: fundamental problems, ecological significance, adaptation in ciliates and testaceans, bioindicators, and guide to the literature. Progress Protozool 2: 69–212

    Google Scholar 

  15. Frontier, S, Pichod-Viale, D (1998) Ecosystemes—Structure, Fonctionnement, Evolution. 2nd ed. Dunod, Paris, pp 290–296

    Google Scholar 

  16. Garcia, MA, Alonso, J, Fernandez, MI, Melgar, MJ (1998) Lead content in edible wild mushrooms in Northwest Spain as indicator of environmental contamination. Arch Environ Contam Toxicol 34: 330–335

    Article  PubMed  CAS  Google Scholar 

  17. Gilbert, D, Amblard, C, Bourdier, G, Francez, A-J (1998) The microbial loop at the surface of a peatland: structure, function, and impact of nutrient input. Microb Ecol 35: 83–93

    Article  PubMed  CAS  Google Scholar 

  18. Gilbert, D, Amblard, C, Bourdier, G, Francez, A-J, Mitchell, EAD (2000) Le régime alimentaire des thécamoebiens. Annee Biol 39: 57–68

    Google Scholar 

  19. Gilbert, D, Francez, AJ, Amblard, C, Bourdier, G (2000) The microbial communities at the surface of the Sphagnum peatlands: good indicators of human disturbances? Ecologie 30: 45–52

    Google Scholar 

  20. Glooschenko, WA, Holloway, L, Arafat, N (1986) The use of mires in monitoring the atmospheric deposition of heavy metals. Aquat Bot 25: 179–190

    Article  CAS  Google Scholar 

  21. Golemansky, VG (1979) Thécamoebien psammobiotes du supralittoral vietnamien de la Mer Chinoise et description de Cryptodifflugia brevicolla sp. n. (Rhizopoda: Arcellinida). Acta Protozool 18: 285–292

    Google Scholar 

  22. Golemansky, VG, Todorov, MT (2000) Testate amoebae (Protozoa: Rhizopoda) from Thailand. Acta Protozool 39: 337–344

    Google Scholar 

  23. Gombert, S, Rausch de Traubenberg, C, Galsomies, L, Signoret, J (2002) Atmospheric metal deposition based on moss analysis: which classification and mapping method to choose for a relevant interpretation of actual deposition and critical loads? Pollut Atmos 173: 99–121

    CAS  Google Scholar 

  24. Hamada, N, Miyawaki, H (1998) Lichens as bioindicators of air pollution. Jpn J Ecol 48: 49–60

    Google Scholar 

  25. Harithsa, S, Kerkarb, S, Loka Bharathi, PA (2002) Mercury and lead tolerance in hypersaline sulfate-reducing bacteria. Mar Pollut Bull 44: 726–732

    Article  PubMed  CAS  Google Scholar 

  26. Horswell, J, Speir, TW, van Schaik, AP (2003) Bio-indicators to assess impacts of heavy metals in land-applied sewage sludge. Soil Biol Biochem 35: 1501–1505

    Article  CAS  Google Scholar 

  27. Kelly, JJ, Haggblom, MM, Tate, RL (2003) Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter as indicated by analysis of microbial community phospholipid fatty acid profiles. Biol Fertil Soils 38: 67–70

    Article  CAS  Google Scholar 

  28. Klumpp, A, Hintemanna, T, Limac, JS, Kandeler, E (2003) Bioindication of air pollution effects near a copper smelter in Brazil using mango trees and soil microbiological properties. Environ Pollut 126: 313–321

    Article  PubMed  CAS  Google Scholar 

  29. Lee, CSL, Li, X, Zhang, G, Peng, X, Zhang, L (2005) Biomonitoring of trace metals in the atmosphere using moss (Hypnum plumaeforme) in the Nanling Mountains and the Pearl River Delta, Southern China. Atmos Environ 39: 397–407

    Article  CAS  Google Scholar 

  30. Lousier, JD (1974) Effects of experimental soil-moisture fluctuations on turnover rates of testacea. Soil Biol Biochem 6: 19–26

    Article  Google Scholar 

  31. Lousier, JD (1974) Response of soil testacea to soil-moisture fluctuations. Soil Biol Biochem 6: 235–239

    Article  Google Scholar 

  32. Lüftenegger, G, Foissner, W (1989) Bodenzoologische Untersuchungen. In: Kasperowski, E, Frank, E (Eds.) Boden- und Vegetationsuntersuchungen im Bereich der Scheitelstrecke der Tauernautobaln. Umweltbundesamt Wien, Monographie 15, pp 88–93

  33. McGrath, SP (2000) Bioavailibility of metals to soil microbes. In: Allen, HE (Ed.) Bioavailability of Metals in Terrestrial Ecosystems: Importance of Partitioning for Bioavailability to Invertebrates, Microbes and Plants. Sectac Press, Pensacola, FL, pp 69–87

    Google Scholar 

  34. Metcalfe-Smith, JL (1996) Biological water-quality assessment of rivers: use of macroinvertebrate communities. In: Petts, G, Calow, P (Eds.) River Restoration. Blackwell Science, Oxford, pp 17–43

    Google Scholar 

  35. Mitchell, EAD, Borcard, D, Buttler, AJ, Grosvernier, P, Gilbert, D, Gobat, JM (2000) Horizontal distribution patterns of testate amoebae (Protozoa) in a Sphagnum magellanicum carpet. Microb Ecol 39: 290–300

    PubMed  Google Scholar 

  36. Mitchell, EAD, Bragazzab, L, Gerdolb, R (2004) Testate amoebae (Protista) communities in Hylocomium splendens (Hedw.) B.S.G. (Bryophyta): relationships with altitude, and moss elemental chemistry. Protist 155: 423–436

    Article  PubMed  Google Scholar 

  37. Mitchell, EAD, Gilbert, D (2004) Vertical micro-distribution and response to nitrogen deposition of testate amoebae in sphagnum. J Eukaryot Microbiol 51: 480–490

    Google Scholar 

  38. Nelson, YM, Lo, W, Lion, LW, Shuler, ML, Ghiorse, WC (1995) Lead distribution in a simulated aquatic environment: Effects of bacterial biofilms and iron oxide. Water Res 29: 1934–1944

    Article  CAS  Google Scholar 

  39. Nguyen Hong, K (1996) Building up of the air quality monitoring network based on the air pollution prediction up to 2010, Hanoi University Of Construction, Hanoi, Vietnam, pp 142

    Google Scholar 

  40. Nguyen Thi, TPT (2001) Report of gaseous emission monitoring at nine industrial zones in Hanoi in 2001. National Centre for Natural Sciences and Technology, Institute of Chemistry (in Vietnamese), Hanoi, Vietnam, pp 1–58

    Google Scholar 

  41. Nguyen-Viet, H, Gilbert, D, Bernard, N, Mitchell, EAD, Badot, PM (2004) Relationship between atmospheric pollution characterized by NO2 concentrations and testate amoebae abundance and diversity. Acta Protozool 43: 233–329

    CAS  Google Scholar 

  42. Ogden, CG, Hedley, RH (1980) An Atlas to Freshwater Testate Amoebae. Oxford University Press, Oxford, pp 12–213

    Google Scholar 

  43. Palmieri, F, Neri, R, Benco, C, Serracca, L (1997) Lichens and moss as bioindicators and bioaccumulators in air pollution monitoring. J Environ Pathol Toxicol 16: 175–190

    Google Scholar 

  44. Patterson, RT, Barker, T, Burbidge, SM (1996) Arcellaceans (Thecamoebians) as proxies of arsenic and mercury contamination in northeastern Ontario lakes. J Foraminiferal Res 26: 172–183

    Article  Google Scholar 

  45. Pearson, J, Wells, DM, Seller, KJ, Bennett, A, Soares, A, Woodall, J, Ingrouille, MJ (2000) Traffic exposure increases natural N and heavy metal concentrations in mosses. New Phytol 147: 317–326

    Article  CAS  Google Scholar 

  46. Reinhardt, EG, Dalby, AP, Kumar, A, Patterson, RT (1998) Arcellaceans as pollution indicators in mine tailing contaminated lakes near Cobalt, Ontario, Canada. Micropaleontology 44: 131–148

    Article  Google Scholar 

  47. Reynolds, B, Mills, G, Pugh, B (2001) Monitoring of atmospheric heavy-metal deposition in Europe using bryophytes—experimental protocol 2000/2001 survey, UNECE International Cooperative Programme on Effect of Air Pollution on Natural Vegetation and Crops, Centre for Ecology and Hydrology, Bangor, UK, pp 8

  48. Ruhling, A (2002) A European survey of atmospheric heavy metal deposition in 2000–2001. Environ Pollut 120: 23–25

    Article  PubMed  CAS  Google Scholar 

  49. Shubert, LE, Rusu, A-M, Bartok, K, Moncrieff, CB (2001) Distribution and abundance of edaphic algae adapted to highly acidic, metal rich soils. Nova Hedwig 123: 411–425

    Google Scholar 

  50. Steinnes, E (1993) Some aspects of biomonitoring of air pollutants using mosses as illustrated by the 1976 Norwegian survey. In: Markert, B (Ed.) Plants as Biomonitors, Indicators for Heavy Metals of the Terrestrial Environment. VCH Publishers, Weinheim, New York, pp 381–394

    Google Scholar 

  51. Ter Braak, C, Smilauer, P (1998) Canoco Reference Manual and User’s Guide to Canoco for Windows, Software for Canoco Community Ordination (Version 4). Centre for Biometry, Wageningen, the Netherlands, pp 31–145

    Google Scholar 

  52. Tolonen, K, Warner, BG, Vasander, H (1992) Ecology of Testaceans (Protozoa, Rhizopoda) in Mires in Southern Finland. 1. Autecology. Arch Protistenkd 142: 119–138

    Google Scholar 

  53. Tolonen, K, Warner, BG, Vasander, H (1994) Ecology of Testaceans (Protozoa, Rhizopoda) in Mires in Southern Finland. 2. Multivariate analysis. Arch Protistenkd 144: 97–112

    Google Scholar 

  54. Utermölh, H (1958) Zur vervollkommnung der quantative phytoplankton-methodik. Mitt Inst Verhein Limnol 9: 1–38

    Google Scholar 

  55. Van Kerckvoorde, A, Trappeniers, K, Chardez, D, Nijs, I, Beyens, L (2000) Testate amoebae communities from terrestrial moss habitats in the Zackenberg area (North-East Greenland). Acta Protozool 39: 27–33

    Google Scholar 

  56. Vincke, S, Gremmen, N, Beyens, L, Vijver, BVd (2004) The moss dwelling testacean fauna of Île de la Possession. Polar Biol 27: 753–766

    Article  Google Scholar 

  57. VNJMS (2002) Summary of meteorological, agro-meteorological, hydrological and marinological state of April, May and June 2002 (in Vietnamese).Vietnamese Journal of Meteorological Science 5, 6 and 7/2002: 52–57, 51–58, 53–57

  58. Walkers, CH, Hopkin, SP, Sibly, RM, Peakall, DB (1996) Principles of Ecotoxicology. Taylor and Francis, London, pp 1–6, 195–210

    Google Scholar 

  59. Weiss, D, Shotyk, W, Kramers, JD, Gloor, M (1999) Sphagnum mosses as archives of recent and past atmospheric lead deposition in Switzerland. Atmos Environ 33: 3751–3763

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Nadia Crini for her assistance in chemical analyses; Renaud Scheifler and Michael Coeurdassier for helpful discussion throughout the work; Florence Mazier for initiating the first author into multivariate analysis; Quynh Trang Bui and Ngoc Nam Le for their help in moss sampling; Dr. Ninh Tran (Department of Biology, Hanoi National University, Vietnam) for identifying Bryophytes in Hanoi; the faculty of Agro-Biology (Hanoi University of Education, Vietnam) and the Centre for Mangrove Ecosystem Research (Hanoi National University, Vietnam) for providing punctual access to laboratory materials; Van Hoan Kieu (Faculty of Geology, Hanoi University of Education, Vietnam) for providing a map of Hanoi; and Prof. David Wilkinson (Biological and Earth Sciences, Liverpool John Moores University) and two anonymous reviewers for helpful comments on an earlier version of the manuscript. This work was partly supported by the French Embassy in Vietnam and EU project RECIPE (European Commission project n° EVK2-2002-00269 and Swiss State Secretariat for Education and Research SER project n° 01.0438-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Nguyen-Viet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen-Viet, H., Bernard, N., Mitchell, E.A.D. et al. Relationship Between Testate Amoeba (Protist) Communities and Atmospheric Heavy Metals Accumulated in Barbula indica (Bryophyta) in Vietnam. Microb Ecol 53, 53–65 (2007). https://doi.org/10.1007/s00248-006-9108-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-006-9108-y

Keywords

Navigation