Skip to main content

Advertisement

Log in

MR insights into fetal brain development: what is normal and what is not

  • Review
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Fetal brain development is a complex, rapid, and multi-dimensional process that can be documented with MRI. In the second and third trimesters, there are predictable developmental changes that must be recognized and differentiated from disease. This review delves into the key biological processes that drive fetal brain development, highlights normal developmental anatomy, and provides a framework to identify pathology. We will summarize the development of the cerebral hemispheres, sulci and gyri, extra-axial and ventricular cerebrospinal fluid, and corpus callosum and illustrate the most common abnormal findings in the clinical setting.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The image set displayed in this study is not publicly available. However, de-identified data can be obtained from the corresponding author upon request.

References

  1. Sarma A, Pruthi S (2023) Congenital brain malformations-update on newer classification and genetic basis. Semin Roentgenol 58:6–27

    Article  PubMed  Google Scholar 

  2. Yang E, Chu WCW, Lee EY (2017) A practical approach to supratentorial brain malformations: what radiologists should know. Radiol Clin North Am 55:609–627

    Article  PubMed  Google Scholar 

  3. Choi JJ, Yang E, Soul JS, Jaimes C (2020) Fetal magnetic resonance imaging: supratentorial brain malformations. Pediatr Radiol 50:1934–1947

    Article  PubMed  Google Scholar 

  4. Riddle A, Nagaraj U, Hopkin RJ et al (2021) Fetal magnetic resonance imaging (MRI) in holoprosencephaly and associations with clinical outcome: implications for fetal counseling. J Child Neurol 36:357–364

    Article  PubMed  Google Scholar 

  5. Kousa YA, du Plessis AJ, Vezina G (2018) Prenatal diagnosis of holoprosencephaly. Am J Med Genet C Semin Med Genet 178:206–213

    Article  PubMed  Google Scholar 

  6. Gunny RS, Saunders DE, Argyropoulou MI Paediatric neuroradiology. In: Grainger & Allison’s Diagnostic Radiology, 7th ed. Elsevier, pp 1984–2045

  7. Picone O, Hirt R, Suarez B et al (2006) Prenatal diagnosis of a possible new middle interhemispheric variant of holoprosencephaly using sonographic and magnetic resonance imaging. Ultrasound Obstet Gynecol off J Int Soc Ultrasound Obstet Gynecol 28:229–231

    Article  CAS  Google Scholar 

  8. Malinger G, Lev D, Lerman-Sagie T (2004) Abnormal sulcation as an early sign for migration disorders. Ultrasound Obstet Gynecol off J Int Soc Ultrasound Obstet Gynecol 24:704–705

    Article  CAS  Google Scholar 

  9. Garel C, Chantrel E, Brisse H et al (2001) Fetal cerebral cortex: normal gestational landmarks identified using prenatal MR imaging. AJNR Am J Neuroradiol 22:184–189

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Boston Children’s, Hospital FNNDSC Fetal data: Boston Children’s Hospital, CRL. https://app.fetalmri.org/niivue

  11. Lerman-Sagie T, Pogledic I, Leibovitz Z, Malinger G (2021) A practical approach to prenatal diagnosis of malformations of cortical development. Eur J Paediatr Neurol EJPN off J Eur Paediatr Neurol Soc 34:50–61

    Article  Google Scholar 

  12. Barkovich AJ (2010) Current concepts of polymicrogyria. Neuroradiology 52:479–487

    Article  PubMed  PubMed Central  Google Scholar 

  13. Miller E, Blaser S, Shannon P, Widjaja E (2009) Brain and bone abnormalities of thanatophoric dwarfism. AJR Am J Roentgenol 192:48–51

    Article  PubMed  Google Scholar 

  14. Manikkam SA, Chetcuti K, Howell KB et al (2018) Temporal lobe malformations in Achondroplasia: expanding the Brain Imaging phenotype Associated with FGFR3-Related skeletal dysplasias. AJNR Am J Neuroradiol 39:380–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vasung L, Lepage C, Radoš M et al (2016) Quantitative and qualitative analysis of transient fetal compartments during prenatal human Brain Development. Front Neuroanat 10:11

    Article  PubMed  PubMed Central  Google Scholar 

  16. Priego G, Barrowman NJ, Hurteau-Miller J, Miller E (2017) Does 3T fetal MRI improve Image Resolution of normal brain structures between 20 and 24 weeks’ gestational age? AJNR Am J Neuroradiol 38:1636–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kolasinski J, Takahashi E, Stevens AA et al (2013) Radial and tangential neuronal migration pathways in the human fetal brain: anatomically distinct patterns of diffusion MRI coherence. NeuroImage 79:412–422

    Article  PubMed  Google Scholar 

  18. Kostović I, Judas M, Rados M, Hrabac P (2002) Laminar organization of the human fetal cerebrum revealed by histochemical markers and magnetic resonance imaging. Cereb Cortex N Y N 1991 12:536–544

    Google Scholar 

  19. Natarajan N, Tully HM, Chapman T (2016) Prenatal presentation of pyruvate dehydrogenase complex deficiency. Pediatr Radiol 46:1354–1357

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tamaru S, Kikuchi A, Takagi K et al (2012) A case of pyruvate dehydrogenase E1α subunit deficiency with antenatal brain dysgenesis demonstrated by prenatal sonography and magnetic resonance imaging. J Clin Ultrasound JCU 40:234–238

    Article  PubMed  Google Scholar 

  21. Khalid M, Khalid S, Zaheer S et al (2012) Hydranencephaly: a rare cause of an enlarging head size in an infant. North Am J Med Sci 4:520–522

    Article  Google Scholar 

  22. Pavone P, Praticò AD, Vitaliti G et al (2014) Hydranencephaly: cerebral spinal fluid instead of cerebral mantles. Ital J Pediatr 40:79

    Article  PubMed  PubMed Central  Google Scholar 

  23. Thiong’o GM, Ferson SS, Albright AL (2020) Hydranencephaly treatments: retrospective case series and review of the literature. J Neurosurg Pediatr 26:228–231

    Article  PubMed  Google Scholar 

  24. Curry CJ, Lammer EJ, Nelson V, Shaw GM (2005) Schizencephaly: heterogeneous etiologies in a population of 4 million California births. Am J Med Genet A 137:181–189

    Article  PubMed  Google Scholar 

  25. Nabavizadeh SA, Zarnow D, Bilaniuk LT et al (2014) Correlation of prenatal and postnatal MRI findings in schizencephaly. AJNR Am J Neuroradiol 35:1418–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. D’Antonio F, Papageorghiou AT (2018) Ventriculomegaly. In: Obstetric imaging: fetal diagnosis and care. Elsevier, pp 230–235.e1

  27. Barzilay E, Bar-Yosef O, Dorembus S et al (2017) Fetal brain anomalies associated with ventriculomegaly or asymmetry: an MRI-based study. Am J Neuroradiol 38:371–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alluhaybi AA, Altuhaini K, Ahmad M (2022) Fetal ventriculomegaly: a review of literature. Cureus 14:e22352

    PubMed  PubMed Central  Google Scholar 

  29. Mirsky DM, Stence NV, Powers AM et al (2020) Imaging of fetal ventriculomegaly. Pediatr Radiol 50:1948–1958

    Article  PubMed  Google Scholar 

  30. Lipitz S, Yagel S, Malinger G et al (1998) Outcome of fetuses with isolated borderline unilateral ventriculomegaly diagnosed at mid-gestation. Ultrasound Obstet Gynecol off J Int Soc Ultrasound Obstet Gynecol 12:23–26

    Article  CAS  Google Scholar 

  31. Heaphy-Henault KJ, Guimaraes CV, Mehollin-Ray AR et al (2018) Congenital Aqueductal stenosis: findings at fetal MRI that accurately predict a postnatal diagnosis. AJNR Am J Neuroradiol 39:942–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Andescavage NN, DuPlessis A, McCarter R et al (2016) Cerebrospinal fluid and parenchymal brain development and growth in the healthy fetus. Dev Neurosci 38:420–429

    Article  CAS  PubMed  Google Scholar 

  33. Danzer E, Johnson MP, Bebbington M et al (2007) Fetal head biometry assessed by fetal magnetic resonance imaging following in utero myelomeningocele repair. Fetal Diagn Ther 22:1–6

    Article  PubMed  Google Scholar 

  34. Danzer E, Johnson MP, Bebbington M et al (2004) Correction of cerebrospinal fluid levels and brain growth demonstrated by serial fetal magnetic resonance imaging following. Am J Obstet Gynecol 191:S171

    Article  Google Scholar 

  35. Muntoni F, Voit T (2004) The congenital muscular dystrophies in 2004: a century of exciting progress. Neuromuscul Disord 14:635–649

    Article  PubMed  Google Scholar 

  36. Goodyear PW, Bannister CM, Russell S, Rimmer S (2001) Outcome in prenatally diagnosed fetal agenesis of the corpus callosum. Fetal Diagn Ther 16:139–145

    Article  CAS  PubMed  Google Scholar 

  37. Glenn OA, Goldstein RB, Li KC et al (2005) Fetal magnetic resonance imaging in the evaluation of fetuses referred for sonographically suspected abnormalities of the corpus callosum. J Ultrasound Med off J Am Inst Ultrasound Med 24:791–804

    Google Scholar 

  38. Hopkins B, Sutton VR, Lewis RA (2008) Neuroimaging aspects of Aicardi syndrome. Am J Med Genet A 146A:2871–2878

    Article  PubMed  PubMed Central  Google Scholar 

  39. García-Arreza A, García-Díaz L, Fajardo M (2013) Isolated absence of septum pellucidum: prenatal diagnosis and outcome. Fetal Diagn Ther 33:130–132

    Article  PubMed  Google Scholar 

Download references

Funding

American Roentgen Ray Society Scholarship; Career development award from the Office of Faculty Development at Boston Children’s Hospital; National Institute of Neurological Disorders and Stroke, Grant/Award Numbers:R01EB031849, R01EB032366, R01HD109395, R01NS106030; NIH Office of the Director, Grant/Award Number: S10OD0250111; Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital; National Institute of Biomedical Imaging and Bioengineering; Eunice Kennedy Shriver National Institute of Child Health.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by M.C.C-A, M.A.B, J.J.C, and C.J. The first draft of the manuscript was written by M.C.C-A and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Camilo Jaimes.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jungwhan John Choi and Camilo Jaimes are co- senior authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cortes-Albornoz, M.C., Bedoya, M.A., Choi, J.J. et al. MR insights into fetal brain development: what is normal and what is not. Pediatr Radiol 54, 635–645 (2024). https://doi.org/10.1007/s00247-024-05890-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-024-05890-z

Keywords

Navigation