Skip to main content

Advertisement

Log in

Magnetic resonance imaging of the fetal musculoskeletal system

  • Fetal imaging
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Diagnosing musculoskeletal pathology requires understanding of the normal embryological development. Intrinsic errors of skeletal development are individually rare but are of paramount clinical importance because anomalies can greatly impact patients’ lives. An accurate assessment of the fetal musculoskeletal system must be performed to provide optimal genetic counseling as well as to drive therapeutic management. This manuscript reviews the embryology of skeletal development and the appearance of the maturing musculoskeletal system on fetal MRI. In addition, it presents a comprehensive review of musculoskeletal fetal pathology along with postnatal imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Nemec SF, Nemec U, Brugger PC et al (2012) MR imaging of the fetal musculoskeletal system. Prenat Diagn 32:205–213

    Article  PubMed  Google Scholar 

  2. Neuman J, Calvo-Garcia MA, Kline-Fath BM et al (2012) Prenatal imaging of amniotic band sequence: utility and role of fetal MRI as an adjunct to prenatal US. Pediatr Radiol 42:544–551

    Article  PubMed  Google Scholar 

  3. Nemec SF, Kasprian G, Brugger PC et al (2011) Abnormalities of the upper extremities on fetal magnetic resonance imaging. Ultrasound Obstet Gynecol 38:559–567

    Article  CAS  PubMed  Google Scholar 

  4. Laor T, Jaramillo D (2009) MR imaging insights into skeletal maturation: what is normal? Radiology 250:28–38

    Article  PubMed  Google Scholar 

  5. Nemec SF, Nemec U, Brugger PC et al (2011) Skeletal development on fetal magnetic resonance imaging. Top Magn Reson Imaging 22:101–106

    Article  PubMed  Google Scholar 

  6. Kovacs CS (2011) Bone development in the fetus and neonate: role of the calciotropic hormones. Curr Osteoporos Rep 9:274–283

    Article  PubMed  Google Scholar 

  7. Laor T, Jaramillo D (2020) It's time to recognize the perichondrium. Pediatr Radiol 50:153–160

    Article  PubMed  Google Scholar 

  8. Schumacher R, Seaver LH, Spranger J (2010) Fetal radiology a diagnostic atlas, 2nd edn. Springer-Verlag, Heidelberg

    Book  Google Scholar 

  9. Victoria T, Johnson AM, Edgar JC et al (2016) Comparison between 1.5-T and 3-T MRI for fetal imaging: is there an advantage to imaging with a higher field strength? AJR Am J Roentgenol 206:195–201

    PubMed  Google Scholar 

  10. Lyons K, Cassady C, Mehollin-Ray A, Krishnamurthy R (2015) Current role of fetal magnetic resonance imaging in body anomalies. Semin Ultrasound CT MR 36:310–323

    Article  PubMed  Google Scholar 

  11. Nemec U, Nemec SF, Krakow D et al (2011) The skeleton and musculature on foetal MRI. Insights Imag 2:309–318

    Article  Google Scholar 

  12. Patel MD, Swinford AE, Filly RA (1994) Anatomic and sonographic features of the fetal skull. J Ultrasound Med 13:251–257

    Article  CAS  PubMed  Google Scholar 

  13. Rubio EI, Blask A, Bulas DI (2016) Ultrasound and MR imaging findings in prenatal diagnosis of craniosynostosis syndromes. Pediatr Radiol 46:709–718

    Article  PubMed  Google Scholar 

  14. Ketwaroo PD, Robson CD, Estroff JA (2015) Prenatal imaging of craniosynostosis syndromes. Semin Ultrasound CT MR 36:453–464

    Article  PubMed  Google Scholar 

  15. Werner H, Castro P, Daltro P et al (2018) Prenatal diagnosis of Apert syndrome using ultrasound, magnetic resonance imaging, and three-dimensional virtual/physical models: three case series and literature review. Childs Nerv Syst 34:1563–1571

    Article  PubMed  Google Scholar 

  16. Giancotti A, D'Ambrosio V, De Filippis A et al (2014) Comparison of ultrasound and magnetic resonance imaging in the prenatal diagnosis of Apert syndrome: report of a case. Childs Nerv Syst 30:1445–1448

    CAS  PubMed  Google Scholar 

  17. Mailath-Pokorny M, Klein K, Worda C et al (2012) Maxillary dental arch biometry: assessment with fetal MR imaging. Prenat Diagn 32:530–535

    Article  PubMed  Google Scholar 

  18. Nemec U, Nemec SF, Brugger PC et al (2015) Normal mandibular growth and diagnosis of micrognathia at prenatal MRI. Prenat Diagn 35:108–116

    Article  PubMed  Google Scholar 

  19. Wang G, Shan R, Zhao L et al (2011) Fetal cleft lip with and without cleft palate: comparison between MR imaging and US for prenatal diagnosis. Eur J Radiol 79:437–442

    Article  PubMed  Google Scholar 

  20. Resnick CM, Estroff JA, Kooiman TD et al (2018) Pathogenesis of cleft palate in Robin sequence: observations from prenatal magnetic resonance imaging. J Oral Maxillofac Surg 76:1058–1064

    Article  PubMed  Google Scholar 

  21. Rogers-Vizena CR, Mulliken JB, Daniels KM, Estroff JA (2016) Prenatal features predictive of Robin sequence identified by fetal magnetic resonance imaging. Plast Reconstr Surg 137:999e–1006e

    Article  CAS  PubMed  Google Scholar 

  22. Antonakopoulos N, Bhide A (2019) Focus on prenatal detection of micrognathia. J Fetal Med 6:107–112

    Article  Google Scholar 

  23. Upasani VV, Ketwaroo PD, Estroff JA et al (2016) Prenatal diagnosis and assessment of congenital spinal anomalies: review for prenatal counseling. World J Orthop 7:406–417

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yazici Z, Kline-Fath BM, Laor T, Tinkle BT (2010) Fetal MR imaging of Kniest dysplasia. Pediatr Radiol 40:348–352

    Article  PubMed  Google Scholar 

  25. Shekdar K (2016) MRI of fetal spine and extremities. In: Masselli G (ed) MRI of fetal and maternal diseases in pregnancy. Springer International Publishing, Switzerland, pp 139–158

    Chapter  Google Scholar 

  26. Mekonen HK, Hikspoors JP, Mommen G et al (2015) Development of the ventral body wall in the human embryo. J Anat 227:673–685

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dighe M, Fligner C, Cheng E et al (2008) Fetal skeletal dysplasia: an approach to diagnosis with illustrative cases. Radiographics 28:1061–1077

    Article  PubMed  Google Scholar 

  28. Victoria T, Epelman M, Coleman BG et al (2013) Low-dose fetal CT in the prenatal evaluation of skeletal dysplasias and other severe skeletal abnormalities. AJR Am J Roentgenol 200:989–1000

    Article  PubMed  Google Scholar 

  29. Donne HD Jr, Faundes A, Tristao EG et al (2005) Sonographic identification and measurement of the epiphyseal ossification centers as markers of fetal gestational age. J Clin Ultrasound 33:394–400

    Article  PubMed  Google Scholar 

  30. Gentili P, Trasimeni A, Giorlandino C (1984) Fetal ossification centers as predictors of gestational age in normal and abnormal pregnancies. J Ultrasound Med 3:193–197

    Article  CAS  PubMed  Google Scholar 

  31. Nemec U, Nemec SF, Weber M et al (2013) Human long bone development in vivo: analysis of the distal femoral epimetaphysis on MR images of fetuses. Radiology 267:570–580

    Article  PubMed  Google Scholar 

  32. Al-Qattan MM, Yang Y, Kozin SH (2009) Embryology of the upper limb. J Hand Surg Am 34:1340–1350

    Article  PubMed  Google Scholar 

  33. Alrabai HM, Farr A, Bettelheim D et al (2017) Prenatal diagnosis of congenital upper limb differences: a current concept review. J Matern Fetal Neonatal Med 30:2557–2563

    Article  PubMed  Google Scholar 

  34. Rosano A, Botto LD, Olney RS et al (2000) Limb defects associated with major congenital anomalies: clinical and epidemiological study from the International Clearinghouse for Birth Defects Monitoring Systems. Am J Med Genet 93:110–116

    Article  CAS  PubMed  Google Scholar 

  35. Sifakis S, Basel D, Ianakiev P et al (2001) Distal limb malformations: underlying mechanisms and clinical associations. Clin Genet 60:165–172

    Article  CAS  PubMed  Google Scholar 

  36. Barry M (2005) Prenatal assessment of foot deformity. Early Hum Dev 81:793–796

    Article  PubMed  Google Scholar 

  37. Dobbs MB, Gurnett CA (2009) Update on clubfoot: etiology and treatment. Clin Orthop Relat Res 467:1146–1153

    Article  PubMed  PubMed Central  Google Scholar 

  38. Servaes S, Hernandez A, Gonzalez L et al (2010) Fetal MRI of clubfoot associated with myelomeningocele. Pediatr Radiol 40:1874–1879

    Article  PubMed  Google Scholar 

  39. Nemec U, Nemec SF, Kasprian G et al (2012) Clubfeet and associated abnormalities on fetal magnetic resonance imaging. Prenat Diagn 32:822–828

    PubMed  Google Scholar 

  40. Miller M, Dobbs MB (2015) Congenital vertical talus: etiology and management. J Am Acad Orthop Surg 23:604–611

    Article  PubMed  Google Scholar 

  41. Rubio EI, Mehta N, Blask AR, Bulas DI (2017) Prenatal congenital vertical talus (rocker bottom foot): a marker for multisystem anomalies. Pediatr Radiol 47:1793–1799

    Article  PubMed  Google Scholar 

  42. Efkarpidis S, Alexopoulos E, Kean L et al (2004) Case-control study of factors associated with intrauterine fetal deaths. MedGenMed 6:53

    PubMed  PubMed Central  Google Scholar 

  43. Verbruggen SW, Loo JH, Hayat TT et al (2016) Modeling the biomechanics of fetal movements. Biomech Model Mechanobiol 15:995–1004

    Article  PubMed  Google Scholar 

  44. Guo WY, Ono S, Oi S et al (2006) Dynamic motion analysis of fetuses with central nervous system disorders by cine magnetic resonance imaging using fast imaging employing steady-state acquisition and parallel imaging: a preliminary result. J Neurosurg 105:94–100

    PubMed  Google Scholar 

  45. Krakow D, Lachman RS, Rimoin DL (2009) Guidelines for the prenatal diagnosis of fetal skeletal dysplasias. Genet Med 11:127–133

    Article  PubMed  PubMed Central  Google Scholar 

  46. Victoria T, Zhu X, Lachman R et al (2018) What is new in prenatal skeletal dysplasias? AJR Am J Roentgenol 210:1022–1033

    Article  PubMed  Google Scholar 

  47. Gilligan LA, Calvo-Garcia MA, Weaver KN, Kline-Fath BM (2020) Fetal magnetic resonance imaging of skeletal dysplasias. Pediatr Radiol 50:224–233

    Article  PubMed  Google Scholar 

  48. Berceanu C, Gheonea IA, Vladareanu S et al (2017) Ultrasound and MRI comprehensive approach in prenatal diagnosis of fetal osteochondrodysplasias. Cases series. Med Ultrason 19:66–72

    Article  PubMed  Google Scholar 

  49. Weaver KN, Johnson J, Kline-Fath B et al (2014) Predictive value of fetal lung volume in prenatally diagnosed skeletal dysplasia. Prenat Diagn 34:1326–1331

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy A. Chauvin.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Online Supplementary Material 1

Post-processing cinematic clip manipulated at the workstation showed normal fetus followed by affected fetus with clubfeet and clenched hands. Clip courtesy of Dr. Monica Epelman (MP4 4353 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauvin, N.A., Victoria, T., Khwaja, A. et al. Magnetic resonance imaging of the fetal musculoskeletal system. Pediatr Radiol 50, 2009–2027 (2020). https://doi.org/10.1007/s00247-020-04769-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-020-04769-z

Keywords

Navigation