Skip to main content
Log in

Clinical performance of a free-breathing spatiotemporally accelerated 3-D time-resolved contrast-enhanced pediatric abdominal MR angiography

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

Pediatric contrast-enhanced MR angiography is often limited by respiration, other patient motion and compromised spatiotemporal resolution.

Objective

To determine the reliability of a free-breathing spatiotemporally accelerated 3-D time-resolved contrast-enhanced MR angiography method for depicting abdominal arterial anatomy in young children.

Materials and methods

With IRB approval and informed consent, we retrospectively identified 27 consecutive children (16 males and 11 females; mean age: 3.8 years, range: 14 days to 8.4 years) referred for contrast-enhanced MR angiography at our institution, who had undergone free-breathing spatiotemporally accelerated time-resolved contrast-enhanced MR angiography studies. A radio-frequency-spoiled gradient echo sequence with Cartesian variable density k-space sampling and radial view ordering, intrinsic motion navigation and intermittent fat suppression was developed. Images were reconstructed with soft-gated parallel imaging locally low-rank method to achieve both motion correction and high spatiotemporal resolution. Quality of delineation of 13 abdominal arteries in the reconstructed images was assessed independently by two radiologists on a five-point scale. Ninety-five percent confidence intervals of the proportion of diagnostically adequate cases were calculated. Interobserver agreements were also analyzed.

Results

Eleven out of 13 arteries achieved acceptable image quality (mean score range: 3.9-5.0) for both readers. Fair to substantial interobserver agreement was reached on nine arteries.

Conclusion

Free-breathing spatiotemporally accelerated 3-D time-resolved contrast-enhanced MR angiography frequently yields diagnostic image quality for most abdominal arteries in young children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Olsen ØE (2008) Imaging of abdominal tumours: CT or MRI? Pediatr Radiol 38:452–458

    Article  Google Scholar 

  2. Darge K, Anupindi SA, Jaramillo D (2011) MR imaging of the abdomen and pelvis in infants, children, and adolescents. Radiology 261:12–29

    Article  PubMed  Google Scholar 

  3. Chung T (2005) Magnetic resonance angiography of the body in pediatric patients: experience with a contrast-enhanced time-resolved technique. Pediatr Radiol 35:3–10

    Article  PubMed  Google Scholar 

  4. Grist TM, Thornton FJ (2005) Magnetic resonance angiography in children: technique, indications, and imaging findings. Pediatr Radiol 35:26–39

    Article  PubMed  Google Scholar 

  5. Vasanawala SS, Lustig M (2011) Advances in pediatric body MRI. Pediatr Radiol 41:549–554

    Article  PubMed Central  PubMed  Google Scholar 

  6. Sury MR, Smith JH (2008) Deep sedation and minimal anesthesia. Paediatr Anaesth 18:18–24

    PubMed  Google Scholar 

  7. Pruessmann KP, Weiger M, Scheidegger MB et al (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962

    Article  CAS  PubMed  Google Scholar 

  8. Griswold MA, Jakob PM, Heidemann RM et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210

    Article  PubMed  Google Scholar 

  9. Lustig M, Pauly JM (2010) SPIRiT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space. Magn Reson Med 64:457–471

    PubMed Central  PubMed  Google Scholar 

  10. Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58:1182–1195

    Article  PubMed  Google Scholar 

  11. Pedersen H, Kozerke S, Ringgaard S et al (2009) k-t PCA: temporally constrained k-t BLAST reconstruction using principal component analysis. Magn Reson Med 62:706–716

    Article  PubMed  Google Scholar 

  12. Liang ZP (2007) Spatiotemporal imaging with partially separable functions. Proceedings of IEEE International Symposium on Biomedical Imaging. Arlington, pp 988–991

  13. Lingala SG, Hu Y, DiBella E et al (2011) Accelerated dynamic MRI exploiting sparsity and low-rank structure: k-t SLR. IEEE Trans Med Imaging 30:1042–1054

    Article  PubMed Central  PubMed  Google Scholar 

  14. Haldar JP, Liang ZP (2011) Low-rank approximations for dynamic imaging. Proceedings of IEEE International Symposium on Biomedical Imaging. Chicago, pp 1052–1055

  15. Trzasko J, Manduca A (2011) Local versus global low-rank promotion in dynamic MRI series reconstruction. Proceedings of the 19th Annual Meeting of ISMRM, Montréal, p 4371

  16. Zhang T, Alley MT, Lustig M et al. (2013) Fast 3D DCE-MRI with sparsity and low-rank enhanced SPIRiT (SLR-SPIRiT). Proceedings of the 21st Annual Meeting of ISMRM, Salt Lake City, p 2624

  17. Zhao B, Haldar JP, Christodoulou AG et al (2012) Image reconstruction from highly undersampled (k, t)-space data with joint partial separability and sparsity constraints. IEEE Trans Med Imaging 31:1809–1820

    Article  PubMed Central  PubMed  Google Scholar 

  18. van Vaals JJ, Brummer ME, Dixon WT et al (1993) “Keyhole” method for accelerating imaging of contrast agent uptake. J Magn Reson Imaging 3:671–675

    Article  PubMed  Google Scholar 

  19. Tsao J, Boesiger P, Pruessmann KP (2003) k-t BLAST and k-t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn Reson Med 50:1031–1042

    Article  PubMed  Google Scholar 

  20. Jung H, Sung K, Nayak KS et al (2009) k-t FOCUSS: a general compressed sensing framework for high resolution dynamic MRI. Magn Reson Med 61:103–116

    Article  PubMed  Google Scholar 

  21. Huang F, Lin W, Duensing GR et al (2012) k-t sparse GROWL: sequential combination of partially parallel imaging and compressed sensing in k-t space using flexible virtual coil. Magn Reson Med 68:772–782

    Article  PubMed  Google Scholar 

  22. Feng L, Srichai MB, Lim RP et al (2013) Highly accelerated real-time cardiac cine MRI using k-t SPARSE-SENSE. Magn Reson Med 70:64–74

    Article  PubMed Central  PubMed  Google Scholar 

  23. Trzasko JD, Haider CR, Borisch EA et al (2011) Sparse-CAPR: highly accelerated 4D CE-MRA with parallel imaging and nonconvex compressive sensing. Magn Reson Med 66:1019–1032

    Article  PubMed Central  PubMed  Google Scholar 

  24. Wang K, Busse RF, Holmes JH et al (2011) Interleaved variable density sampling with a constrained parallel imaging reconstruction for dynamic contrast-enhanced MR angiography. Magn Reson Med 66:428–436

    Article  PubMed Central  PubMed  Google Scholar 

  25. Muthupillai R, Vick GW III, Flamm SD et al (2003) Time-resolved contrast-enhanced magnetic resonance angiography in pediatric patients using sensitivity encoding. J Magn Reson Imaging 17:559–564

    Article  PubMed  Google Scholar 

  26. Vasanawala SS, Alley MT, Hargreaves BA et al (2010) Improved pediatric MR imaging with compressed sensing. Radiology 256:607–616

    Article  PubMed Central  PubMed  Google Scholar 

  27. Zhang T, Chowdhury S, Lustig M et al (2014) Clinical performance of contrast enhanced abdominal pediatric MRI with fast combined parallel imaging compressed sensing reconstruction. J Magn Reson Imaging 40:13–25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Hong TS, Greer ML, Grosse-Wortmann L et al (2011) Whole-body MR angiography: initial experience in imaging pediatric vasculopathy. Pediatr Radiol 41:769–778

    Article  PubMed  Google Scholar 

  29. Haldar JP (2014) Low-rank modeling of local k-space neighborhoods (LORAKS) for constrained MRI. IEEE Trans Med Imaging 33:668–681

    Article  PubMed Central  PubMed  Google Scholar 

  30. Ehman RL, McNamara MT, Pallack M et al (1984) Magnetic resonance imaging with respiratory gating: techniques and advantages. AJR Am J Roentgenol 143:1175–1182

    Article  CAS  PubMed  Google Scholar 

  31. Batchelor PG, Atkinson D, Irarrazaval P et al (2005) Matrix description of general motion correction applied to multishot images. Magn Reson Med 54:1273–1280

    Article  CAS  PubMed  Google Scholar 

  32. Odille F, Vuissoz PA, Marie PY et al (2008) Generalized reconstruction by inversion of coupled systems (GRICS) applied to free-breathing MRI. Magn Reson Med 60:146–157

    Article  PubMed  Google Scholar 

  33. Buerger C, Schaeffter T, King AP (2011) Hierarchical adaptive local affine registration for fast and robust respiratory motion estimation. Med Image Anal 15:551–564

    Article  PubMed  Google Scholar 

  34. Cheng JY, Alley MT, Cunningham CH et al (2012) Nonrigid motion correction in 3D using autofocusing with localized linear translation. Magn Reson Med 68:1785–1797

    Article  PubMed Central  PubMed  Google Scholar 

  35. Johnson KM, Block WF, Reeder SB et al (2012) Improved least squares MR image reconstruction using estimates of k-space data consistency. Magn Reson Med 67:1600–1608

    Article  PubMed Central  PubMed  Google Scholar 

  36. Forman C, Piccini D, Grimm R et al (2015) Reduction of respiratory motion artifacts for free-breathing whole-heart coronary MRA by weighted iterative reconstruction. Magn Reson Med 73:1885–1895

    Article  PubMed  Google Scholar 

  37. Cheng JY, Zhang T, Ruangwattanapaisarn N et al (2014) Free-breathing pediatric MRI with nonrigid motion correction and acceleration. J Magn Reson Imaging. doi:10.1002/jmri.24785

    PubMed Central  Google Scholar 

  38. Jhooti P, Wiesmann F, Taylor AM et al (1998) Hybrid ordered phase encoding (HOPE): an improved approach for respiratory artifact reduction. J Magn Reson Imaging 8:968–980

    Article  CAS  PubMed  Google Scholar 

  39. Doneva M, Stehning C, Nehrke K, et al P (2011) Improving scan efficiency of respiratory gated imaging using compressed sensing with 3D Cartesian golden angle sampling. Proceedings of the 19th Annual Meeting of ISMRM, Montréal, p 641

  40. Gdaniec N, Eggers H, Börnert P et al (2014) Robust abdominal imaging with incomplete breath-holds. Magn Reson Med 71:1733–1742

    Article  PubMed  Google Scholar 

  41. Cheng JY, Zhang T, Alley MT et al. (2013) Variable-density radial view-ordering and sampling for time-optimized 3D Cartesian imaging. Proceedings of the ISMRM Workshop on Data Sampling and Image Reconstruction, Sedona

  42. Zhang T, Cheng JY, Potnick AG et al (2015) Fast pediatric 3D free-breathing abdominal dynamic contrast enhanced MRI with high spatiotemporal resolution. J Magn Reson Imaging 41:460–473

    Article  PubMed  Google Scholar 

  43. Zhang T, Pauly JM, Vasanawala SS et al (2013) Coil compression for accelerated imaging with Cartesian sampling. Magn Reson Med 69:571–582

    Article  PubMed Central  PubMed  Google Scholar 

  44. Newcombe RG (1998) Two-sided confidence intervals for the single proportion: comparison of seven methods. Statist Med 17:857–872

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants R01 EB009690, R01 EB019241, P41 EB015891, the Tashia and John Morgridge Faculty Scholars Fund and GE Healthcare.

Conflicts of interest

T. Zhang, J. Y. Cheng, M. T. Alley, M. Lustig, J. M. Pauly and S. S. Vasanawala collaborate on research with GE Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Yousaf, U., Hsiao, A. et al. Clinical performance of a free-breathing spatiotemporally accelerated 3-D time-resolved contrast-enhanced pediatric abdominal MR angiography. Pediatr Radiol 45, 1635–1643 (2015). https://doi.org/10.1007/s00247-015-3384-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-015-3384-y

Keywords

Navigation