Skip to main content
Log in

Fetal magnetic resonance imaging: jumping from 1.5 to 3 tesla (preliminary experience)

Pediatric Radiology Aims and scope Submit manuscript

Abstract

Several attempts have been made at imaging the fetus at 3 T as part of the continuous search for increased image signal and better anatomical delineation of the developing fetus. Until very recently, imaging of the fetus at 3 T has been disappointing, with numerous artifacts impeding image analysis. Better magnets and coils and improved technology now allow imaging of the fetus at greater magnetic strength, some hurdles in the shape of imaging artifacts notwithstanding. In this paper we present the preliminary experience of evaluating the developing fetus at 3 T and discuss several artifacts encountered and techniques to decrease them, as well as safety concerns associated with scanning the fetus at higher magnetic strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Smith FW, Adam AH, Phillips WD (1983) NMR imaging in pregnancy. Lancet 1:61–62

    Article  PubMed  CAS  Google Scholar 

  2. Stark DD, McCarthy SM, Filly RA et al (1985) Pelvimetry by magnetic resonance imaging. AJR Am J Roentgenol 144:947–950

    Article  PubMed  CAS  Google Scholar 

  3. DeLano MC, Fisher C (2006) 3 T MR imaging of the brain. Magn Reson Imaging Clin N Am 14:77–88

    Article  PubMed  Google Scholar 

  4. Kuo R, Panchal M, Tanenbaum L et al (2007) 3.0 Tesla imaging of the musculoskeletal system. J Magn Reson Imaging 25:245–261

    Article  PubMed  Google Scholar 

  5. Chang KJ, Kamel IR, Macura KJ et al (2008) 3.0-T MR imaging of the abdomen: comparison with 1.5 T. Radiographics 28:1983–1998

    Article  PubMed  Google Scholar 

  6. Barth MM, Smith MP, Pedrosa I et al (2007) Body MR imaging at 3.0 T: understanding the opportunities and challenges. Radiographics 27:1445–1462, discussion 1462–1464

    Google Scholar 

  7. Erturk SM, Alberich-Bayarri A, Herrmann KA et al (2009) Use of 3.0-T MR imaging for evaluation of the abdomen. Radiographics 29:1547–1563

    Article  PubMed  Google Scholar 

  8. Glockner JF, Hu HH, Stanley DW et al (2005) Parallel MR imaging: a user’s guide. Radiographics 25:1279–1297

    Article  PubMed  Google Scholar 

  9. De Bazelaire CM, Duhamel GD, Rofsky NM et al (2004) MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 230:652–659

    Article  PubMed  Google Scholar 

  10. Hedrick HL, Danzer E, Merchant A et al (2007) Liver position and lung-to-head ratio for prediction of extracorporeal membrane oxygenation and survival in isolated left congenital diaphragmatic hernia. Am J Obstet Gynecol 197:e421–e424

    Article  Google Scholar 

  11. Victoria T, Bebbington MW, Danzer E et al (2012) Use of magnetic resonance imaging in prenatal prognosis of the fetus with isolated left congenital diaphragmatic hernia. Prenat Diagn 32:715–723

    Article  PubMed  Google Scholar 

  12. Jani J, Cannie M, Sonigo P et al (2008) Value of prenatal magnetic resonance imaging in the prediction of postnatal outcome in fetuses with diaphragmatic hernia. Ultrasound Obstet Gynecol 32:793–799

    Article  PubMed  CAS  Google Scholar 

  13. Victoria T, Danzer E, Adzick NS (2013) Use of ultrasound and MRI for evaluation of lung volumes in fetuses with isolated left congenital diaphragmatic hernia. Semin Pediatr Surg 22:30–36

    Article  PubMed  Google Scholar 

  14. Victoria T, Epelman M, Coleman BG et al (2013) Low-dose fetal CT in the prenatal evaluation of skeletal dysplasias and other severe skeletal abnormalities. AJR Am J Roentgenol 200:989–1000

    Article  PubMed  Google Scholar 

  15. Zizka J, Elias P, Hodik K et al (2006) Liver, meconium, haemorrhage: the value of T1-weighted images in fetal MRI. Pediatr Radiol 36:792–801

    Article  PubMed  Google Scholar 

  16. Saguintaah M, Couture A, Veyrac C et al (2002) MRI of the fetal gastrointestinal tract. Pediatr Radiol 32:395–404

    Article  PubMed  Google Scholar 

  17. Rubesova E, Vance CJ, Ringertz HG et al (2009) Three-dimensional MRI volumetric measurements of the normal fetal colon. AJR Am J Roentgenol 192:761–765

    Article  PubMed  Google Scholar 

  18. Soher BJ, Dale BM, Merkle EM (2007) A review of MR physics: 3 T versus 1.5 T. Magn Reson Imaging Clin N Am 15:277–290

    Article  PubMed  Google Scholar 

  19. Franklin KM, Dale BM, Merkle EM (2008) Improvement in B1-inhomogeneity artifacts in the abdomen at 3 T MR imaging using a radiofrequency cushion. J Magn Reson Imaging 27:1443–1447

    Article  PubMed  Google Scholar 

  20. Kataoka M, Isoda H, Maetani Y et al (2007) MR imaging of the female pelvis at 3 tesla: evaluation of image homogeneity using different dielectric pads. J Magn Reson Imaging 26:1572–1577

    Article  PubMed  Google Scholar 

  21. Vernickel P, Roschmann P, Findeklee C et al (2007) Eight-channel transmit/receive body MRI coil at 3 T. Magn Reson Med 58:381–389

    Article  PubMed  CAS  Google Scholar 

  22. Ullmann P, Junge S, Wick M et al (2005) Experimental analysis of parallel excitation using dedicated coil setups and simultaneous RF transmission on multiple channels. Magn Reson Med 54:994–1001

    Article  PubMed  Google Scholar 

  23. Willinek WA, Gieseke J, Kukuk GM et al (2010) Dual-source parallel radiofrequency excitation body MR imaging compared with standard MR imaging at 3.0 T: initial clinical experience. Radiology 256:966–975

    Article  PubMed  Google Scholar 

  24. Baker PN, Johnson IR, Harvey PR et al (1994) A three-year follow-up of children imaged in utero with echo-planar magnetic resonance. Am J Obstet Gynecol 170:32–33

    Article  PubMed  CAS  Google Scholar 

  25. Kanal E, Gillen J, Evans JA et al (1993) Survey of reproductive health among female MR workers. Radiology 187:395–399

    PubMed  CAS  Google Scholar 

  26. Myers C, Duncan KR, Gowland PA et al (1998) Failure to detect intrauterine growth restriction following in utero exposure to MRI. Br J Radiol 71:549–551

    PubMed  CAS  Google Scholar 

  27. Denegre JM, Valles JM Jr, Lin K et al (1998) Cleavage planes in frog eggs are altered by strong magnetic fields. Proc Natl Acad Sci U S A 95:14729–14732

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Hand JW, Li Y, Hajnal JV (2010) Numerical study of RF exposure and the resulting temperature rise in the foetus during a magnetic resonance procedure. Phys Med Biol 55:913–930

    Article  PubMed  CAS  Google Scholar 

  29. Hand JW, Li Y, Thomas EL et al (2006) Prediction of specific absorption rate in mother and fetus associated with MRI examinations during pregnancy. Magn Reson Med 55:883–893

    Article  PubMed  CAS  Google Scholar 

  30. Van den Berg CA, van den Bergen B, Van de Kamer JB et al (2007) Simultaneous B1 + homogenization and specific absorption rate hotspot suppression using a magnetic resonance phased array transmit coil. Magn Reson Med 57:577–586

    Article  PubMed  Google Scholar 

  31. Homann H, Graesslin I, Eggers H et al (2012) Local SAR management by RF shimming: a simulation study with multiple human body models. MAGMA 25:193–204

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Victoria.

Additional information

CME activity

This article has been selected as the CME activity for the current month. Please visit the SPR Web site at www.pedrad.org on the Education page and follow the instructions to complete this CME activity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Victoria, T., Jaramillo, D., Roberts, T.P.L. et al. Fetal magnetic resonance imaging: jumping from 1.5 to 3 tesla (preliminary experience). Pediatr Radiol 44, 376–386 (2014). https://doi.org/10.1007/s00247-013-2857-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-013-2857-0

Keywords

Navigation