Skip to main content

Advertisement

Log in

Maternal Diabetes and Cardiovascular Health in the Offspring

  • Research
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Pulse wave velocity (PWV) has been explored to predict cardiovascular health in adults. Less is known about neonatal PWV. We evaluated the association between arterial stiffness of neonates of mothers (NoM) with diabetes and childhood health. Neonatal brachial-femoral PWV (bfPWV) was measured after birth and neonates followed for a median of 5.2 years [1 month–6.6 years]. 36 pregnant women with pregestational diabetes mellitus PGDM (n = 12), gestational diabetes mellitus (GDM) (n = 13), and controls (n = 11) were enrolled. Neonates were similar in weight, gestational age, and delivery mode. 26 neonates had follow-up data including weight, height and blood pressure. More mothers with PGDM had poor glycemic control compared to mothers with GDM (83% vs. 8%; p = 0.0002). PWV was higher in NoM with PGDM than controls (3.4 ± 0.5 vs. 2.6 ± 0.8 m/s; p = 0.04). At follow-up, children of mothers with diabetes (n = 16) had higher weight percentile (78.5 ± 27.9 vs 49.5 ± 34.6%; p = 0.02) and diastolic blood pressure (DBP) (68 ± 13.6 vs 57.3 ± 4.3 mmHg; p = 0.01) than controls (n = 10). No correlation emerged between neonatal PWV and childhood body mass index (BMI) or maternal HbA1c. Results suggest maternal diabetes affect neonatal arterial stiffness and childhood blood pressure; however, the mechanism is unclear. The long-term implications of these findings warrant further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a
Fig. 1b
Fig. 1c

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy restrictions.

References

  1. Boney CM, Verma A, Tucker R, Vohr BR (2005) Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational Diabetes Mellitus. Pediatrics 115:e290–e296

    Article  PubMed  Google Scholar 

  2. Fraser A, Tilling K, Macdonald-Wallis C, Sattar N, Brion MJ, Benfield L, Ness A, Deanfield J, Hingorani A, Nelson SM, Smith GD, Lawlor DA (2010) Association of maternal weight gain in pregnancy with offspring obesity and metabolic and vascular traits in childhood. Circulation 121(23):2557–2564. https://doi.org/10.1161/CIRCULATIONAHA.109.906081. Epub 2010 Jun 1. PMID: 20516377; PMCID: PMC3505019

    Article  PubMed  PubMed Central  Google Scholar 

  3. Drake AJ, Reynolds RM (2010) Impact of maternal obesity on offspring obesity and cardiometabolic Disease risk. Reproduction 140(3):387–398. https://doi.org/10.1530/REP-10-0077. Epub 2010 Jun 18. PMID: 20562299

    Article  CAS  PubMed  Google Scholar 

  4. Lawlor DA, Lichtenstein P, Långström N (2011) Association of maternal Diabetes Mellitus in pregnancy with offspring adiposity into early adulthood: sibling study in a prospective cohort of 280,866 men from 248,293 families. Circulation 123(3):258–265. https://doi.org/10.1161/CIRCULATIONAHA.110.980169. Epub 2011 Jan 10. PMID: 21220735; PMCID: PMC4440894

    Article  PubMed  PubMed Central  Google Scholar 

  5. Martyn CN, Greenwald SE (1997) Impaired synthesis of elastin in walls of aorta and large conduit arteries during early development as an initiating event in pathogenesis of systemic Hypertension. Lancet 350:953–955

    Article  CAS  PubMed  Google Scholar 

  6. Winder NR, Krishnaveni GV, Hill JC, Karat CL, Fall CH, Veena SR, Barker DJ (2011) Placental programming of blood pressure in Indian children. Acta Paediatr 100(5):653–660. https://doi.org/10.1111/j.1651-2227.2010.02102.x. Epub 2011 Jan 12. PMID: 21166711; PMCID: PMC3107945

    Article  PubMed  PubMed Central  Google Scholar 

  7. Creager MA, Luscher TF, Cosentino F, Beckman JA, Circulation (2003) ;108(12):1527–1532

  8. Schram MT, Henry RM, van Dijk RA et al (2004) Increased central artery stiffness in impaired glucose metabolism and type 2 Diabetes: the Hoorn Study. Hypertension 43(2):176–181

    Article  CAS  PubMed  Google Scholar 

  9. Laurent S, Cockcroft J, Bortel LV, Boutouyrie P, Cristina Giannattasio C, Hayoz D, Pannier B, Vlachopoulos C, Wilkinson I, Struijker-Boudier H (November 2006) On behalf of the European Network for Non-invasive Investigation of Large Arteries, Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 27:2588–2605

  10. Vlachopoulos C, Aznaouridis K, Stefanadis C (2010) Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. ;55(13):1318-27. https://doi.org/10.1016/j.jacc.2009.10.061. PMID: 20338492

  11. Martyn CN, Barker DJ, Jespersen S, Greenwald S, Osmond C, Berry C (1995) Growth in utero, adult blood pressure, and arterial compliance. Br Heart J 73:116–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Montgomery AA, Ben Shlomo Y, McCarthy A, Davies D, Elwood P, Smith GD (2000) Birth size and arterial compliance in young adults. Lancet 355:2136–2137

    Article  CAS  PubMed  Google Scholar 

  13. Styczynski G, Abramczyk P, Szmigielski C, Placha G, Gaciong Z (2000) Birth size and arterial compliance in young adults. Lancet 356:855–856

    Article  CAS  PubMed  Google Scholar 

  14. Oren A, Vos LE, Bos WJ, Safar ME, uiterwaal CS, Gorissen WH, Grobbee DE (2003 Jan) Bots MLGestational age and birth weight in relation to aortic stiffness in healthy young adults: two separate mechanisms? Am J Hypertens 16(1):76

  15. Chen S, Chetty S, Lowenthal A, Evans JM, Chau V, Buccola KJ, Lyell D, Tierney ES (2015) Feasibility of neonatal pulse wave velocity and association with maternal hemoglobin A1c. Neonatology 107(1):20–26. https://doi.org/10.1159/000366467. Epub 2014 Oct 4

    Article  CAS  PubMed  Google Scholar 

  16. International Association of Diabetes and Pregnancy Study Groups Consensus Panel, Metzger BE, Gabbe SG, Persson B, Buchanan TA, Catalano PA, Damm P, Dyer AR, Leiva A, Hod M, Kitzmiler JL, Lowe LP, McIntyre HD, Oats JJ, Omori Y, Schmidt MI (2010) International association of Diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 33(3):67

    Article  Google Scholar 

  17. Harris P, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG (2009) Research electronic data capture (REDCap) - a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform 42(2):377–381

    Article  PubMed  Google Scholar 

  18. Bramwell JC, Hill AV, McSwiney BA (1923) The velocity of the pulse wave in man in relation to age as measured by the hot-wire sphygmograph. Heart 10:233–255

    Google Scholar 

  19. Colan SD (2009) Normal echocardiographic values for cardiovascular structures. In: Lai WW, Cohen MS, Geva T, Mertens L, editors. Echocardiography in Pediatric and Congenital Heart Disease. Wiley-Blackwell, West Sussex, UK, Appendix 1, pp 765–785

  20. Sluysmans T, Colan SD (2009) Structural measurements and adjustment for growth. In: Lai WW, Cohen MS, Geva T, Mertens L (eds) Echocardiography in Pediatric and congenital Heart Disease. Wiley-Blackwell, West Sussex, UK. Chapter 5.

    Google Scholar 

  21. Shypailo RJ (2018) Age-based Pediatric Blood Pressure Reference Charts Retrieved 10/3/2022 from the Baylor College of Medicine, Children’s Nutrition Research Center, Body Composition Laboratory Web Site: http://www.bcm.edu/bodycomplab/BPappZjs/BPvAgeAPPz.htm

  22. Hawthorne G, Robson S, Ryall EA, Sen D, Roberts SH, Platt MPW et al (1997) Prospective population based survey of outcome of pregnancy in diabetic women: results of the Northern Diabetic pregnancy audit, 1994. BMJ 315:279. https://doi.org/10.1136/bmj.315.7103.279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sharpe PB, Chan A, Haan EA, Hiller JE (2005) Maternal Diabetes and congenital anomalies in South Australia 1986–2000: a population-based cohort study. Birth Defects Research Part A: Clinical and Molecular Teratology 73:605–611

    Article  CAS  PubMed  Google Scholar 

  24. Heiskanen N, Raatikainen K, Heinonen S (2006) Fetal macrosomia: a Continuing Obstetric Challenge. Biol Neonate 90:98–103. https://doi.org/10.1159/000092042

    Article  PubMed  Google Scholar 

  25. Silverman BL, Metzger BE, Cho NH, Loeb CA (1995) Impaired glucose tolerance in adolescent offspring of mothers with Diabetes. Relationship to fetal hyperinsulinism. Diabetes Care 18:611–617

    Article  CAS  PubMed  Google Scholar 

  26. Bunt JC, Tataranni PA, Salbe AD (2005) Intrauterine exposure to Diabetes is a determinant of hemoglobin A(1)c and systolic blood pressure in Pima Indian children. J Clin Endocrinol Metab 90:3225–3229

    Article  CAS  PubMed  Google Scholar 

  27. Clausen TD, Mathiesen ER, Hansen T, Pedersen O, Jensen DM, Lauenborg J, Schmidt L, Damm P (2009) Overweight and the metabolic syndrome in adult offspring of women with diet- treated gestational Diabetes Mellitus or type 1 Diabetes. J Clin Endocrinol Metab 94:2464–2470

    Article  CAS  PubMed  Google Scholar 

  28. Koudsi A, Oldroyd J, McElduff P, Banerjee M, Vyas A, Cruickshank JK (2007) Maternal and neonatal influences on, and reproducibility of, neonatal aortic pulse wave velocity. Hypertension 49(1):225–231. https://doi.org/10.1161/01.HYP.0000250434.73119.7a. Epub 2006 Nov 6. PMID: 17088451

    Article  CAS  PubMed  Google Scholar 

  29. Tam WH, Ma RC, Yip GW, Yang X, Li AM, Ko GT, Lao TT, Chan JC (2012) The association between in utero hyperinsulinemia and adolescent arterial stiffness. Diabetes Res Clin Pract 95(1):169–175. https://doi.org/10.1016/j.diabres.2011.10.017. Epub 2011 Nov 5. PMID: 22063192

    Article  CAS  PubMed  Google Scholar 

  30. Do V, Al-Hashmi H, Ojala T, Jain V, Colen T, Goncalvez-Alvarez S, Davidge ST, Al- Rajaa N, Serrano-Lomelin J, Stickland MK, Hornberger LK (2019) Cardiovascular Health of offspring of Diabetic Mothers from the fetal through late-infancy stages. JACC Cardiovasc Imaging 12(5):932–934 Epub 2018 Dec 12. PMID: 30553661

    Article  PubMed  Google Scholar 

  31. Sundholm JKM, Litwin L, Rönö K, Koivusalo SB, Eriksson JG, Sarkola T (2019 May) Maternal obesity and gestational Diabetes: impact on arterial wall layer thickness and stiffness in early childhood - RADIEL study six-year follow-up. Atherosclerosis 284:237–244 Epub 2019 Feb 12. PMID: 30819513

  32. Nehring I, Chmitorz A, Reulen H, von Kries R, Ensenauer R (2013) Gestational Diabetes predicts the risk of childhood overweight and abdominal circumference Independent of maternal obesity. Diabet Med 30(12):1449–1456. https://doi.org/10.1111/dme.12286. Epub 2013 Aug 19. PMID: 23869909

    Article  CAS  PubMed  Google Scholar 

  33. Philipps LH, Santhakumaran S, Gale C, Prior E, Logan KM, Hyde MJ, Modi N (2011) The diabetic pregnancy and offspring BMI in childhood: a systematic review and meta- analysis. Diabetologia 54(8):1957–1966. https://doi.org/10.1007/s00125-011-2180-y. Epub 2011 May 31. PMID: 21626451

    Article  CAS  PubMed  Google Scholar 

  34. Miranda JO, Cerqueira RJ, Barros H, Areias JC (2019) Maternal Diabetes Mellitus as a risk factor for High Blood Pressure in late childhood: a prospective birth Cohort Study. Hypertension 73:e1–e7

    Article  CAS  PubMed  Google Scholar 

  35. Aceti A, Santhakumaran S, Logan KM, Philipps LH, Prior E, Gale C, Hyde MJ, Modi N (2012) The diabetic pregnancy and offspring blood pressure in childhood: a systematic review and meta-analysis. Diabetologia. ;55(11):3114-27. https://doi.org/10.1007/s00125-012-2689-8. Epub 2012 Sep 5. PMID: 22948491

Download references

Acknowledgements

We would like to thank the patients who made this study possible.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

E.S. and S.C. conceived and designed the study. R.J., K.S., E.T., S.C. and A.A. acquired and entered study data. R.J. primarily wrote the main manuscript text and prepared all figures and tables. All authors participated in data interpretation, literature review and manuscript revision, and provided final approval.

Corresponding author

Correspondence to Elif Seda Selamet Tierney.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics Approval

This study was approved by the Institutional Review Board at Stanford University #58353.

Conflict of interest

The authors have no relevant financial or non-financial interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jodah, R., Arunamata, A., Kipps, A.K. et al. Maternal Diabetes and Cardiovascular Health in the Offspring. Pediatr Cardiol (2023). https://doi.org/10.1007/s00246-023-03333-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00246-023-03333-4

Keywords

Navigation