Skip to main content

Advertisement

Log in

Ventricular Arterial Coupling: A Novel Echocardiographic Risk Factor for Disease Progression in Pediatric Dilated Cardiomyopathy

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

In adult heart failure (HF) patients, a higher ventricular arterial (VA) coupling ratio measured non-invasively is associated with worse HF prognosis and response to treatment. There are no data regarding the relationship of VA coupling to outcome in pediatric dilated cardiomyopathy (DCM) patients. We investigated the association of VA coupling ratio with worse outcome (mechanical circulatory support, transplant, or death) in 48 children with DCM and 97 age-gender matched controls. Mean age at presentation was 9 ± 7 years; DCM patients had a higher arterial elastance (3.8 ± 1.7 vs 2.7 ± 0.7 respectively p = 0.001), a lower LV elastance (1.1 ± 0.65 vs 4.5 ± 1.4, respectively p = 0.001) and higher VA coupling ratio (5.0 ± 3.9 vs 0.34 ± 0.14, respectively p = 0.001). Outcome events occurred in 27/48 (56%) patients. Patients with an outcome event had a higher NYHA class (p = 0.001), lower LV elastance (0.8 ± 0.47 vs 1.6 ± 0.57, respectively p = 0.001), higher arterial elastance (4.5 ± 1.8 vs 2.9 ± 1.1, respectively p = 0.002), and a higher VA coupling ratio (7.1 ± 3.8 vs 2.2 ± 1.5, respectively p = 0.001) compared to those without. In a multivariate CART analysis, VA coupling was the top and only discriminator of poor outcome. In conclusion, a higher VA coupling ratio is associated with worse outcome in pediatric patients with DCM. VA coupling is promising as a bedside analysis tool that may provide insight into the mechanisms of HF in pediatric DCM and identify potential targets for therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Borlaug BA, Kass DA (2009) Invasive hemodynamic assessment in heart failure. Heart Fail Clin 5(2):217–228

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chirinos JA. Ventricular-arterial coupling: invasive and non-invasive assessment. Artery Res. 2013;7(1):2–14

    Article  Google Scholar 

  3. Chowdhury SM, Butts RJ, Taylor CL, Bandisode VM, Chessa KS, Hlavacek AM et al (2016) Validation of noninvasive measures of left ventricular mechanics in children: a simultaneous echocardiographic and conductance catheterization study. J Am Soc Echocardiogr 29(7):640–647

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sagawa K, Suga H, Shoukas AA, Bakalar KM (1977) End-systolic pressure/volume ratio: a new index of ventricular contractility. Am J Cardiol 40(5):748–753

    Article  PubMed  CAS  Google Scholar 

  5. Borlaug BA, Lam CS, Roger VL, Rodeheffer RJ, Redfield MM (2009) Contractility and ventricular systolic stiffening in hypertensive heart disease insights into the pathogenesis of heart failure with preserved ejection fraction. J Am Coll Cardiol 54(5):410–418

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kelly RP, Ting CT, Yang TM, Liu CP, Maughan WL, Chang MS et al (1992) Effective arterial elastance as index of arterial vascular load in humans. Circulation 86(2):513–521

    Article  PubMed  CAS  Google Scholar 

  7. Fox JM, Maurer MS (2005) Ventriculovascular coupling in systolic and diastolic heart failure. Curr Heart Fail Rep 2(4):204–211

    Article  PubMed  Google Scholar 

  8. Chen CH, Fetics B, Nevo E, Rochitte CE, Chiou KR, Ding PA et al (2001) Noninvasive single-beat determination of left ventricular end-systolic elastance in humans. J Am Coll Cardiol 38(7):2028–2034

    Article  PubMed  CAS  Google Scholar 

  9. Kim YJ, Jones M, Greenberg NL, Popovic ZB, Sitges M, Bauer F et al (2007) Evaluation of left ventricular contractile function using noninvasively determined single-beat end-systolic elastance in mitral regurgitation: experimental validation and clinical application. J Am Soc Echocardiogr 20(9):1086–1092

    Article  PubMed  Google Scholar 

  10. Shishido T, Hayashi K, Shigemi K, Sato T, Sugimachi M, Sunagawa K (2000) Single-beat estimation of end-systolic elastance using bilinearly approximated time-varying elastance curve. Circulation 102(16):1983–1989

    Article  PubMed  CAS  Google Scholar 

  11. Tanoue Y, Sese A, Ueno Y, Joh K, Hijii T (2001) Bidirectional Glenn procedure improves the mechanical efficiency of a total cavopulmonary connection in high-risk fontan candidates. Circulation 103(17):2176–2180

    Article  PubMed  CAS  Google Scholar 

  12. Yotti R, Bermejo J, Benito Y, Sanz-Ruiz R, Ripoll C, Martinez-Legazpi P et al (2014) Validation of noninvasive indices of global systolic function in patients with normal and abnormal loading conditions: a simultaneous echocardiography pressure-volume catheterization study. Circ Cardiovasc Imaging 7(1):164–172

    Article  PubMed  Google Scholar 

  13. Antonini-Canterin F, Enache R, Popescu BA, Popescu AC, Ginghina C, Leiballi E et al (2009) Prognostic value of ventricular-arterial coupling and B-type natriuretic peptide in patients after myocardial infarction: a five-year follow-up study. J Am Soc Echocardiogr 22(11):1239–1245

    Article  PubMed  Google Scholar 

  14. Bombardini T, Costantino MF, Sicari R, Ciampi Q, Pratali L, Picano E (2013) End-systolic elastance and ventricular-arterial coupling reserve predict cardiac events in patients with negative stress echocardiography. BioMed Res Int 2013:235194

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ky B, French B, May Khan A, Plappert T, Wang A, Chirinos JA et al (2013) Ventricular-arterial coupling, remodeling, and prognosis in chronic heart failure. J Am Coll Cardiol 62(13):1165–1172

    Article  PubMed  PubMed Central  Google Scholar 

  16. Berthelot E, Bihry N, Brault-Melin O, Assayag P, Cohen-Solal A, Chemla D et al (2014) Changes in ventricular-arterial coupling during decongestive therapy in acute heart failure. Eur J Clin Invest 44(10):982–988

    Article  PubMed  CAS  Google Scholar 

  17. Bozkurt B, Bolos M, Deswal A, Ather S, Chan W, Mann DL et al (2012) New insights into mechanisms of action of carvedilol treatment in chronic heart failure patients—a matter of time for contractility. J Card Fail 18(3):183–193

    Article  PubMed  CAS  Google Scholar 

  18. Feldman MD, Pak PH, Wu CC, Haber HL, Heesch CM, Bergin JD et al (1996) Acute cardiovascular effects of OPC-18790 in patients with congestive heart failure. Time- and dose-dependence analysis based on pressure-volume relations. Circulation 93(3):474–483

    Article  PubMed  CAS  Google Scholar 

  19. Kameyama T, Asanoi H, Ishizaka S, Sasayama S (1991) Ventricular load optimization by unloading therapy in patients with heart failure. J Am Coll Cardiol 17(1):199–207

    Article  PubMed  CAS  Google Scholar 

  20. Lopez L, Colan SD, Frommelt PC, Ensing GJ, Kendall K, Younoszai AK et al (2010) Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J Am Soc Echocardiogr 23(5):465–495; quiz 576-7

    Article  PubMed  Google Scholar 

  21. Friedberg MK, Margossian R, Lu M, Mercer-Rosa L, Henderson HT, Nutting A et al (2016) Systolic-diastolic functional coupling in healthy children and in those with dilated cardiomyopathy. J Appl Physiol 120(11):1301–1318

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zoghbi WA, Enriquez-Sarano M, Foster E, Grayburn PA, Kraft CD, Levine RA et al (2003) Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr 16(7):777–802

    Article  PubMed  Google Scholar 

  23. Colan SD, Shirali G, Margossian R, Gallagher D, Altmann K, Canter C et al (2012) The ventricular volume variability study of the Pediatric Heart Network: study design and impact of beat averaging and variable type on the reproducibility of echocardiographic measurements in children with chronic dilated cardiomyopathy. J Am Soc Echocardiogr 25(8):842–854 e6

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lemon SC, Roy J, Clark MA, Friedmann PD, Rakowski W (2003) Classification and regression tree analysis in public health: methodological review and comparison with logistic regression. Ann Behav Med 26(3):172–181

    Article  PubMed  Google Scholar 

  25. Therneau T, Atkinson B, Ripley B (2017) rpart: Recursive Partitioning and Regression Trees. R package version 4.1-11, URL https://CRAN.R-project.org/package=rpart

  26. Alvarez JA, Orav EJ, Wilkinson JD, Fleming LE, Lee DJ, Sleeper LA et al (2011) Competing risks for death and cardiac transplantation in children with dilated cardiomyopathy: results from the pediatric cardiomyopathy registry. Circulation 124(7):814–823

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fernandes FP, Manlhiot C, McCrindle BW, Mertens L, Kantor PF, Friedberg MK (2011) Usefulness of mitral regurgitation as a marker of increased risk for death or cardiac transplantation in idiopathic dilated cardiomyopathy in children. Am J Cardiol 107(10):1517–1521

    Article  PubMed  Google Scholar 

  28. McMahon CJ, Nagueh SF, Eapen RS, Dreyer WJ, Finkelshtyn I, Cao X et al (2004) Echocardiographic predictors of adverse clinical events in children with dilated cardiomyopathy: a prospective clinical study. Heart 90(8):908–915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Molina KM, Shrader P, Colan SD, Mital S, Margossian R, Sleeper LA et al (2013) Predictors of disease progression in pediatric dilated cardiomyopathy. Circ Heart Fail 6(6):1214–1222

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chantler PD, Lakatta EG, Najjar SS (2008) Arterial-ventricular coupling: mechanistic insights into cardiovascular performance at rest and during exercise. J Appl Physiol 105(4):1342–1351

    Article  PubMed  PubMed Central  Google Scholar 

  31. Shabanian R, Shahbaznejad L, Razaghian A, Kiani A, Rahimzadeh M, Seifirad S et al (2013) Sildenafil and ventriculo-arterial coupling in Fontan-palliated patients: a noninvasive echocardiographic assessment. Pediatr Cardiol 34(1):129–134

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine A. Capone.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this retrospective study formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capone, C.A., Lamour, J.M., Lorenzo, J. et al. Ventricular Arterial Coupling: A Novel Echocardiographic Risk Factor for Disease Progression in Pediatric Dilated Cardiomyopathy. Pediatr Cardiol 40, 330–338 (2019). https://doi.org/10.1007/s00246-018-2021-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-018-2021-6

Keywords

Navigation