Skip to main content

Advertisement

Log in

Fontan Conversion Templates: Patient-Specific Hemodynamic Performance of the Lateral Tunnel Versus the Intraatrial Conduit With Fenestration

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Intraatrial-conduit Fontan is considered a modification of both extracardiac and lateral-tunnel Fontan. In this study, the patient-specific hemodynamic performance of intraatrial-conduit and lateral-tunnel Fontan with fenestration, considered as conversion templates, was investigated based on the authors’ patient cohort. Pulsatile computational fluid dynamics simulations were performed using patient-specific models of intraatrial-conduit and lateral-tunnel Fontan patients. Real-time “simultaneous” inferior and superior vena cava, pulmonary artery, and fenestration flow waveforms were acquired from ultrasound. Multiple hemodynamic performance indices were investigated, with particular focus on evaluation of the pulsatile flow performance. Power loss inside the lateral-tunnel Fontan appeared to be significantly higher than with the intraatrial-conduit Fontan for patient-specific cardiac output and normalized connection size. Inclusion of the 4-mm fenestration at a 0.24 L/min mean flow resulted in a lower cavopulmonary pressure gradient and less time-averaged power loss for both Fontan connections. Flow structures within the intraatrial conduit were notability more uniform than within the lateral tunnel. Hepatic flow majorly favored the left lung in both surgical connections: conversion from lateral-tunnel to intraatrial-conduit Fontan resulted in better hemodynamics with less power loss, a lower pressure gradient, and fewer stagnant flow zones along the conduit. This patient-specific computational case study demonstrated superior hemodynamics of intraatrial-conduit Fontan over those of lateral-tunnel Fontan with or without fenestration and improved performance after conversion of the lateral tunnel to the intraatrial conduit. The geometry-specific effect of the nonuniform hepatic flow distribution may motivate new rationales for the surgical design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brown JW, Ruzmetov M, Deschner BW, Rodefeld MD, Turrentine MW (2010) Lateral tunnel Fontan in the current era: is it still a good option? Ann Thorac Surg 89:556–562; discussion 562–563

    Google Scholar 

  2. Canter CE (2011) Preventing thrombosis after the Fontan procedure not there yet. J Am Coll Cardiol 58:652–653

    Article  PubMed  Google Scholar 

  3. Dasi LP, Pekkan K, Katajima HD, Yoganathan AP (2008) Functional analysis of Fontan energy dissipation. J Biomech 41:2246–2252

    Article  PubMed  Google Scholar 

  4. Dasi LP, Whitehead K, Pekkan K, de Zelicourt D, Sundareswaran K, Kanter K et al (2011) Pulmonary hepatic flow distribution in total cavopulmonary connections: extracardiac versus intracardiac. J Thorac Cardiovasc Surg 141:207–214

    Article  PubMed  Google Scholar 

  5. de Leval MR, Kilner P, Gewillig M, Bull C (1988) Total cavopulmonary connection: a logical alternative to atriopulmonary connection for complex Fontan operations: experimental studies and early clinical experience. J Thorac Cardiovasc Surg 96:682–695

    PubMed  Google Scholar 

  6. de Zelicourt DA, Haggerty CM, Sundareswaran KS, Whited BS, Rossignac JR, Kanter KR et al (2011) Individualized computer-based surgical planning to address pulmonary arteriovenous malformations in patients with a single ventricle with an interrupted inferior vena cava and azygous continuation. J Thorac Cardiovasc Surg 141:1170–1177

    Article  PubMed  Google Scholar 

  7. Dur O, Coskun S, Coskun K, Frakes D, Kara L, Pekkan K (2010) Computer-aided patient-specific coronary artery graft design improvements using CFD-coupled shape optimizer. Cardiovasc Eng Technol 2:35–47

    Article  PubMed  Google Scholar 

  8. Dur O, DeGroff CG, Keller BB, Pekkan K (2010) Optimization of inflow waveform phase-difference for minimized total cavopulmonary power loss. J Biomech Eng 132:031012

    Article  PubMed  Google Scholar 

  9. Dur O, Kocyildirim E, Soran O, Wearden P, Morell V, DeGroff CG et al (2011) Pulsatile venous waveform quality affects the conduit performance in functional and “failing” Fontan circulations. Cardiol Young 19:1–12

    Google Scholar 

  10. Fiore AC, Turrentine M, Rodefeld M, Vijay P, Schwartz TL, Virgo KS et al (2007) Fontan operation: a comparison of lateral tunnel with extracardiac conduit. Ann Thorac Surg 83:622–630

    Article  PubMed  Google Scholar 

  11. Fraser KH (2011) The use of computational fluid dynamics in the development of ventricular assist devices. Med Eng Phys 33:263–280

    Article  PubMed  Google Scholar 

  12. Hsia TY, Khambadkone S, Redington AN, Migliavacca F, Deanfield JE, de Leval MR (2000) Effects of respiration and gravity on infradiaphragmatic venous flow in normal and Fontan patients. Circulation 102(19 Suppl 3):III148–III153

    PubMed  CAS  Google Scholar 

  13. Hsia T, Khambadkone S, Redington A, de Leval M (2001) Effect of fenestration on the subdiaphragmatic venous hemodynamics in the total cavopulmonary connection. Eur J Cardiothorac Surg 19:785–792

    Article  PubMed  CAS  Google Scholar 

  14. Hsia T, Migliavacca F, Pittaccio S (2004) Computational fluid dynamic study of flow optimization in realistic models of the total cavopulmonary connections. J Surg Res 116:305–313

    Article  PubMed  Google Scholar 

  15. Itatani K, Miyaji K, Tomoyasu T (2009) Optimal conduit size of the extracardiac Fontan operation based on energy loss and flow stagnation. Ann Thorac Surg 88:565–572; discussion 563–572

    Google Scholar 

  16. Kim SJ, Bae EJ, Lee JY, Lim HG, Lee C, Lee CH (2009) Inclusion of hepatic venous drainage in patients with pulmonary arteriovenous fistulas. Ann Thorac Surg 87:548–554

    Article  PubMed  Google Scholar 

  17. Klimes K, Abdul-Khaliq H, Ovroutski S, Hui W, Alexi-Meskishvili V et al (2007) Pulmonary and caval blood flow patterns in patients with intracardiac and extracardiac Fontan: a magnetic resonance study. Clin Res Cardiol 96:160–167

    Article  PubMed  CAS  Google Scholar 

  18. Lee SY, Baek JS, Kim GB, Kwon BS, Bae EJ, Noh CI et al (2012) Clinical significance of thrombosis in an intracardiac blind pouch after a Fontan operation. Pediatr Cardiol 33:42–48

    Article  PubMed  Google Scholar 

  19. Marcelletti C, Corno A, Giannico S, Marino B (1990) Inferior vena cava-pulmonary artery extracardiac conduit: a new form of right heart bypass. J Thorac Cardiovasc Surg 100:228–232

    PubMed  CAS  Google Scholar 

  20. Ono M, Boethig D, Goerler H, Lange M, Westhoff-Bleck M, Breymann T (2006) Surgical repair of anomalous pulmonary venous connection shunting from left atrium to superior vena cava. Eur J Cardiothorac Surg 30:923–929

    Article  PubMed  Google Scholar 

  21. Pekkan K, Kitajima H, de Zelicourt D, Forbes J, Parks J, Fogel M et al (2005) Total cavopulmonary connection flow with functional left pulmonary artery stenosis: angioplasty and fenestration in vitro. Circulation 112:3264–3271

    Article  PubMed  Google Scholar 

  22. Pekkan K, de Zelicourt D, Ge L, Sotiropoulos F, Frakes D, Fogel DM et al (2005) Physics-driven CFD modeling of complex anatomical cardiovascular flows: a TCPC case study. Ann Biomed Eng 33:284–300

    Article  PubMed  Google Scholar 

  23. Pekkan K, Dasi LP, de Zelicourt D, Sundareswaran KS, Fogel MA, Kanter KR et al (2009) Hemodynamic performance of stage 2 univentricular reconstruction: Glenn vs hemi-Fontan templates. Ann Biomed Eng 37:50–63

    Article  PubMed  Google Scholar 

  24. Ruiz E, Guerrero R, d’Udekem Y, Brizard C (2009) A technique of fenestration for extracardiac Fontan with long-term patency. Eur J Cardiothorac Surg 36:200–202

    Article  PubMed  Google Scholar 

  25. Salazar JD, Zafar F, Siddiqui K, Coleman RD, Morales DL, Heinle JS, Rossano JW, Mossad EB, Fraser CD Jr (2010) Fenestration during Fontan palliation: now the exception instead of the rule. J Thorac Cardiovasc Surg 140:129–136

    Article  PubMed  Google Scholar 

  26. Varma C, Warr M, Hendler A, Paul N, Webb G, Therrien J (2003) Prevalence of “silent” pulmonary emboli in adults after the Fontan operation. J Am Coll Cardiol 41:2252–2258

    Article  PubMed  Google Scholar 

  27. Walker P, Howe T, Davies R, Fisher J, Watterson K (2000) Distribution of hepatic venous blood in the total cavopulmonary connection: an in vitro study. Eur J Cardiothorac Surg 17:658–665

    Article  PubMed  CAS  Google Scholar 

  28. Whitehead KK, Pekkan K, Kitajima HD, Paridon SM, Yoganathan AP, Fogel MA (2007) Nonlinear power loss during exercise in single-ventricle patients after the Fontan: insights from computational fluid dynamics. Circulation 11:I165–I171

    Google Scholar 

  29. Whitehead KK, Sundareswaran KS, Parks WJ, Harris MA, Yoganathan AP, Fogel MA (2009) Blood flow distribution in a large series of patients having the Fontan operation: a cardiac magnetic resonance velocity mapping study. J Thorac Cardiovasc Surg 138:96–102

    Article  PubMed  Google Scholar 

  30. Yoganathan AP (2005) Flow in prothetic heart valves, state-of-the-art and future directions. ABME 33:1689–1694

    Google Scholar 

Download references

Acknowledgments

This study was supported in part by Carnegie Mellon University, the National Natural Science Foundation of China (Grant 81070133), the Science and Technology Commission of Shanghai Municipality (Grant 114119a8400), and the Pittsburgh Supercomputing Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kerem Pekkan or Jinfen Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, H., Dur, O., Zhang, H. et al. Fontan Conversion Templates: Patient-Specific Hemodynamic Performance of the Lateral Tunnel Versus the Intraatrial Conduit With Fenestration. Pediatr Cardiol 34, 1447–1454 (2013). https://doi.org/10.1007/s00246-013-0669-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-013-0669-5

Keywords

Navigation