Skip to main content
Log in

Propagation of Chaos of Forward–Backward Stochastic Differential Equations with Graphon Interactions

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

In this paper, we study graphon mean field games using a system of forward–backward stochastic differential equations. We establish the existence and uniqueness of solutions under two different assumptions and prove the stability with respect to the interacting graphons which are necessary to show propagation of chaos results. As an application of propagation of chaos, we prove the convergence of n-player game Nash equilibrium for a general model, which is new in the theory of graphon mean field games.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343, 619–625 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen. II: horizon fini et contrôle optimal. C. R. Math. 343, 679–684 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2, 229–260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Huang, M., Caines, P.E., Malhame, R.P.: Large-population cost-coupled lqg problems with nonuniform agents: Individual-mass behavior and decentralized \(\varepsilon \)-nash equilibria. IEEE Trans. Autom. Control 52, 1560–1571 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Huang, M., Malhamé, R.P., Caines, P.E.: Large population stochastic dynamic games: closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6, 221–251 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bayraktar, E., Cecchin, A., Cohen, A., Delarue, F.: Finite state mean field games with wright-fisher common noise. J. Mat. Pures Appl. 147, 98–162 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bayraktar, E., Cecchin, A., Cohen, A., Delarue, F.: Finite state mean field games with Wright-Fisher common noise as limits of \(N\)-player weighted games. Math. Oper. Res. 47, 2840–2890 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bayraktar, E., Cohen, A.: Analysis of a finite state many player game using its master equation. SIAM J. Control Optim. 56, 3538–3568 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cecchin, A., Fischer, M.: Probabilistic approach to finite state mean field games. Appl. Math. Optim. 81, 253–300 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cecchin, A., Pelino, G.: Convergence, fluctuations and large deviations for finite state mean field games via the master equation. Stoch. Process. Appl. 129, 4510–4555 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bayraktar, E., Zhang, X.: On non-uniqueness in mean field games. Proc. Am. Math. Soc. 148, 4091–4106 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cardaliaguet, P., Rainer, C.: An example of multiple mean field limits in ergodic differential games. NoDEA Nonlinear Diff. Equ. Appl. 27, 25 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cecchin, A., Pra, P.D., Fischer, M., Pelino, G.: On the convergence problem in mean field games: a two state model without uniqueness. SIAM J. Control Optim. 57, 2443–2466 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Delarue, F., FoguenTchuendom, R.: Selection of equilibria in a linear quadratic mean-field game. Stoch. Process. Appl. 130, 1000–1040 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Carmona, R., Delarue, F.: Probabilistic theory of mean field games with applications. I. In: Probability Theory and Stochastic Modelling, Mean Field FBSDEs, Control, and Games, vol. 83. Springer, Cham, (2018)

  16. Carmona, R., Delarue, F.: Probabilistic theory of mean field games with applications. II. In: Probability Theory and Stochastic Modelling, Mean Field Games with Common Noise and Master Equations, vol. 84. Springer, Cham (2018)

  17. Cardaliaguet, P., Delarue, F., Lasry, J.-M., Lions, P.-L.: The Master Equation and the Convergence Problem in Mean Field Games, vol. 201. Princeton University Press, Princeton (2019)

    Book  MATH  Google Scholar 

  18. Lacker, D.: A general characterization of the mean field limit for stochastic differential games. Probab. Theory Relat. Fields 165, 581–648 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lacker, D.: On the convergence of closed-loop Nash equilibria to the mean field game limit. Ann. Appl. Probab. 30, 1693–1761 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Laurière, M., Tangpi, L.: Convergence of large population games to mean field games with interaction through the controls. SIAM J. Math. Anal. 54, 3535–3574 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  21. Possamaï, D., Tangpi, L.: Non-asymptotic convergence rates for mean-field games: weak formulation and McKean–Vlasov BSDEs. arXiv:2105.00484 (2021)

  22. Aurell, A., Carmona, R., Laurière, M.: Stochastic graphon games: II. The linear-quadratic case. Appl. Math. Optim. 85, 26–33 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  23. Caines, P.E., Ho, D., Huang, M., Jian, J., Song, Q.: On the graphon mean field game equations: individual agent affine dynamics and mean field dependent performance functions. arXiv:2009.12144 (2020)

  24. Caines, P.E., Huang, M.: Graphon mean field games and their equations. SIAM J. Control Optim. 59, 4373–4399 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Carmona, R., Cooney, D., Graves, C., Laurière, M.: Stochastic graphon games: I. The static case. Math. Oper. Res. (2022)

  26. Borgs, C., Chayes, J.T., Lovász, L., Sós, V.T., Vesztergombi, K.: Convergent sequences of dense graphs. I. Subgraph frequencies, metric properties and testing. Adv. Math. 219, 1801–1851 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Borgs, C., Chayes, J.T., Lovász, L., Sós, V.T., Vesztergombi, K.: Convergent sequences of dense graphs ii. Multiway cuts and statistical physics. Ann. Math. 1, 151–219 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lovász, L., Szegedy, B.: Limits of dense graph sequences. J. Comb. Theory B 96, 933–957 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bayraktar, E., Chakraborty, S., Wu, R.: Graphon mean field systems. Ann. Appl. Probab. arXiv:2003.13180 (2020)

  30. Bayraktar, E., Wu, R.: Stationarity and uniform in time convergence for the graphon particle system. Stoch. Process. Appl. 150, 532–568 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  31. Bayraktar, E., Chakraborty, S., Zhang, X.: \(k\)-Core in percolated dense graph sequences. arXiv:2012.09730. (2020)

  32. Riordan, O.: The \(k\)-core and branching processes. Combin. Probab. Comput. 17, 111–136 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Bayraktar, E., Zhang, X.: Solvability of infinite horizon McKean–Vlasov FBSDEs in mean field control problems and games. Appl. Math. Optim. 87, 13–26 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hu, Y., Peng, S.: Solution of forward–backward stochastic differential equations. Probab. Theory Relat. Fields 103, 273–283 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pardoux, E., Tang, S.: Forward–backward stochastic differential equations and quasilinear parabolic PDEs. Probab. Theory Relat. Fields 114, 123–150 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  36. Carmona, R.: Lectures on BSDEs, Stochastic Control, and Stochastic Differential Games with Financial Applications, vol. 1. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2016)

    Book  MATH  Google Scholar 

  37. Yong, J.: Forward–backward stochastic differential equations with mixed initial-terminal conditions. Trans. Am. Math. Soc. 362, 1047–1096 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, J.: Backward stochastic differential equations. In: Probability Theory and Stochastic Modelling, From Linear to Fully Nonlinear Theory, vol. 86. Springer, New York (2017)

  39. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics, vol. 113, 2nd edn. Springer-Verlag, New York (1991)

    MATH  Google Scholar 

  40. Yong, J.: Finding adapted solutions of forward–backward stochastic differential equations: method of continuation. Probab. Theory Relat. Fields 107, 537–572 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lovász, L.: Large Networks and Graph Limits, vol. 60. American Mathematical Society, London (2012)

    MATH  Google Scholar 

  42. Cohn, D.L.: Measure theory, Birkhäuser Advanced Texts: Basler Lehrbücher [Birkhäuser Advanced Texts: Basel Textbooks], 2nd edn. Birkhäuser/Springer, New York (2013)

    Google Scholar 

  43. Antonelli, F., Ma, J.: Weak solutions of forward–backward sde’s. Stoch. Process. Appl. 21, 493–514 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  44. Delarue, F., Guatteri, G.: Weak existence and uniqueness for forward–backward sdes. Stoch. Process. Appl. 116, 1712–1742 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  45. Ma, J., Zhang, J., Zheng, Z.: Weak solutions for forward–backward SDEs: a martingale problem approach. Ann. Probab. 36, 2092–2125 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

E. Bayraktar is partially supported by the National Science Foundation under Grant DMS2106556 and by the Susan M. Smith chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erhan Bayraktar.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Measurability

Lemma A.1

\(\varvec{\mu }: [0,1] \rightarrow \mathcal {C}\left( [0,T]; \mathcal {P}_p(\mathbb {R}) \right) \) is measurable if and only if for any \(t \in [0,T]\),

$$\begin{aligned} \lambda \mapsto \varvec{\mu }^{\lambda }(t) \in \mathcal {P}_p(\mathbb {R}) \text { is measurable}. \end{aligned}$$
(A.1)

Proof

The proof of ‘only if’ is trivial. For the proof of ‘if’ part, we note that with sup norm, \(\mathcal {C}\left( [0,T];\mathcal {P}_p(\mathbb {R})\right) \) is a topological subspace of \( \mathcal {C}^0 \left( [0,T];\mathcal {P}_p(\mathbb {R})\right) \). For any \(n \in \mathbb {N}\), due to (A.1) we know that

$$\begin{aligned} \lambda \mapsto (\varvec{\mu }^{\lambda }(T/n), \cdots , \varvec{\mu }^{\lambda }(T) ) \text { is measurable}. \end{aligned}$$

We construct \(\varvec{\mu }_n \in \mathcal {M}\left( [0,T];\mathcal {P}_p(\mathbb {R})\right) \)

$$\begin{aligned} \varvec{\mu }_n^{\lambda }(t):= \varvec{\mu }^{\lambda }\left( \frac{i}{n}\right) , \, t \in \left( \frac{(i-1)T}{n},\frac{iT}{n} \right] , \, i=1, \cdots , n. \end{aligned}$$

Then it can be easily verified that \(\lambda \rightarrow \varvec{\mu }_n^{\lambda }\) is measurable. By the continuity of \(\varvec{\mu }^{\lambda }(\cdot )\), \(\lim \limits _{n \rightarrow \infty } \varvec{\mu }_n^{\lambda }= \varvec{\mu }^{\lambda }\) is measurable in \(\lambda \). \(\square \)

Lemma A.2

A function \(x: \lambda \mapsto x^{\lambda } \in L^{p,c}_{\mathcal {F}}\) belongs to \(\mathcal {M}L^{p,c}_{\mathcal {F}}\) if and only if \( \lambda \mapsto x^{\lambda }_t \in L^p_{\mathcal {F}_t}\) is measurable for any \(t \in [0,T]\).

Proof

Note that \(L^{p,c}_{\mathcal {F}} \ni \varvec{\eta } \mapsto \varvec{\eta }_t \in L^p_{\mathcal {F}_t}\) is continuous. Therefore it can be readily seen that the measurability of \(\lambda \mapsto x^{\lambda }\) implies the measurability of \(\lambda \mapsto x^{\lambda }_t\) for any \(t \in [0,T]\).

Conversely, define \(x^{N} \in \mathcal {M}L^{p,2}_{\mathcal {F}}\) for \(N \in \mathbb {N}\) as follows,

$$\begin{aligned} x^{N,\lambda }_t&:=x^{\lambda }_{nT/N}, \quad \forall t \in [nT/N, (n+1)T/N), \, n =0,\cdots , N-2, \, \lambda \in [0,1], \\ x^{N,\lambda }_t&:=x^{\lambda }_{(N-1)T/N}, \quad \forall t \in [(N-1)T/N,T], \, \lambda \in [0,1]. \end{aligned}$$

According to our hypothesis, it can be easily seen that

$$\begin{aligned} \lambda \mapsto x^{N, \lambda } \in \left( L^{p,2}_{\mathcal {F}}, \widetilde{ \Vert \cdot \Vert }_S^p\right) \end{aligned}$$

is measurable, and also the limit

$$\begin{aligned} \lambda \mapsto x^{\lambda } \in \left( L^{p,c}_{\mathcal {F}}, \widetilde{ \Vert \cdot \Vert }_S^p \right) . \end{aligned}$$

\(\square \)

Lemma A.3

Take a polish space \(\Omega \) and a Borel probability measure \((\mathcal {F},P)\) over \(\Omega \). Take another measure space \((E, \Sigma , m)\). Suppose \(\rho : E \times \mathbb {R}\rightarrow \mathbb {R}\) is a real-valued function such that \(x \mapsto \rho (e,x)\) is continuous for any \(e \in E\), \(e \mapsto \rho (e,x)\) is measurable for any \(x \in \mathbb {R}\), and \(|\rho (e,x)| \le C(1+|x|),\, \forall (e,x) \in E \times \mathbb {R}\) for some positive constant C. Then given any measurable mapping \(e \mapsto X(e) \in L^p(\Omega , \mathcal {F},P)\), the Banach-valued function

$$\begin{aligned} e \mapsto \rho (e, X(e)) \in L^p(\Omega , \mathcal {F},P) \end{aligned}$$

is also measurable.

Proof

According to [42, Proposition 3.4.5], the Banach space \(L^p(\Omega , \mathcal {F}, P)\) is separable. Therefore as a result of Pettis measurability theorem, any measurable function \(X: E \rightarrow L^p(\Omega , \mathcal {F}, P)\) is also strongly measurable, i.e., X can be written as a pointwise limit of simple functions

$$\begin{aligned} X^n= \sum _{i=1}^{m_n}\mathbbm {1}_{S_{m_n}} x_{m_n}, \end{aligned}$$

where \(m_n \in \mathbb {N}\), \(S_1, \cdots , S_{m_n}\) is a finite collection of disjoint subsets of E, and \(x_1, \cdots , x_{m_n} \in L^p(\Omega , \mathcal {F}, P)\). It is then readily seen that

$$\begin{aligned} e \mapsto \rho (e, X^n(e)) \end{aligned}$$

is measurable, and thus \(\rho (\cdot , X(\cdot ))= \lim \limits _n \rho (\cdot , X^n(\cdot ))\) is measurable. \(\square \)

Lemma A.4

Suppose \(\psi : [0,1] \times [0,T] \times \mathbb {R}\rightarrow \mathbb {R}\) is a measurable function such that \(x \mapsto \psi (\lambda ,t,x)\) is continuous and grows at most linearly uniformly for \((\lambda ,t) \in [0,1] \times [0,T]\). Given any measurable \(\lambda \mapsto X^{\lambda } \in L^{p,c}_{\mathcal {F}}\), we have that

$$\begin{aligned} \lambda \mapsto \int _0^{\cdot } \psi (\lambda , s ,X^{\lambda }(s)) \, ds \in L^{p,c}_{\mathcal {F}} \end{aligned}$$
(5.1)

is measurable.

Proof

By our assumption, it is clear that \((\lambda ,s) \mapsto X^{\lambda }(s)\) is measurable. Applying Lemma A.3 with \(E=[0,1] \times [0,T]\), it is readily seen that

$$\begin{aligned} (\lambda ,s) \mapsto \psi (\lambda , s ,X^{\lambda }(s)) \end{aligned}$$
(5.2)

is measurable. The function (5.2) is also Bochner integrable due to our linear growth assumption in x. Thus by the Fubini theorem of Bochner theorem,

$$\begin{aligned} \lambda \mapsto \int _0^{t} \psi (\lambda , s,X^{\lambda }(s)) \, ds \end{aligned}$$

is measurable for any \(t \in [0,T]\). Now the measurability of (5.1) follows from Lemma A.2. \(\square \)

Remark A.1

Using approximation of simple functions, one can easily verify that Bochner integral coincides with Lebesgue integral.

Appendix B: Weak Uniqueness of FBSDE

The notion of weak existence and uniqueness for FBSDEs are almost the same to the ones considered for classical SDEs, see e.g. [43,44,45].

Definition B.1

A five-tuple \((\Omega , \mathcal {F}, \mathbb {F}, P, W)\) is said to be a standard set-up if W is a Brownian motion over the probability space \((\Omega , \mathcal {F},\mathbb {F},P)\) and \(\mathbb {F}:=\{ \mathcal {F}\}_{t \ge 0}\) is complete and right continuous.

Consider an FBSDE

$$\begin{aligned} {\left\{ \begin{array}{ll} X_t=x+\int _0^t B(s,X_s, Y_s) \, ds + \sigma \, W_t, \\ Y_t= Q(X_T)+\int _t^T F(s,X_s,Y_s) \, ds- \int _t^T Z_s \, d W_s, \end{array}\right. } \end{aligned}$$
(B.1)

where BFQ are progressively measurable functions.

Definition B.2

A triple of processes (XYZ) is said to be a weak solution of (B.1) if there exists a standard set-up \((\Omega , \mathcal {F}, \mathbb {F}, P, W)\) such that (XYZ) are adapted to the filtration \(\mathbb {F}\) and satisfy (B.1) a.s. If (XYZ) and \((\widetilde{X}, \widetilde{Y},\widetilde{Z})\) are two weak solutions of (B.1) on the same set-up, we say that pathwise uniqueness holds if

$$\begin{aligned} \mathbb {P} \left[ (X_t,Y_t)=(\widetilde{X}_t,\widetilde{Y}_t), \, \forall t \in [0,T] \right] =1. \end{aligned}$$

By Yamada-Watanabe Theorem for SDEs, pathwise uniqueness implies uniqueness in law. We have the same result for FBSDEs.

Lemma B.1

Suppose the pathwise uniqueness property holds for FBSDE (B.1). Then for any two weak solutions (XYZ) on \((\Omega , \mathcal {F}, \mathbb {F}, P, W)\) and \((\widetilde{X},\widetilde{Y},\widetilde{Z})\) on \((\widetilde{\Omega }, \widetilde{\mathcal {F}}, \widetilde{\mathbb {F}}, \widetilde{P}, \widetilde{W})\), their distributions coincide.

Proof

See [43, Theorem 5.1]. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayraktar, E., Wu, R. & Zhang, X. Propagation of Chaos of Forward–Backward Stochastic Differential Equations with Graphon Interactions. Appl Math Optim 88, 25 (2023). https://doi.org/10.1007/s00245-023-09996-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-023-09996-y

Keywords

Mathematics Subject Classification

Navigation