Skip to main content
Log in

Large Deviations and Averaging for Stochastic Tamed 3D Navier–Stokes Equations with Fast Oscillations

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

In this paper, we first study the strong averaging principle for stochastic tamed 3D Navier–Stokes equation with fast oscillations, which can be viewed as the functional law of large numbers. Furthermore, in order to investigate the probability of deviations away from the limiting process, the Freidlin–Wentzell type large deviation principle is also established by employing the weak convergence method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ansari, A.: Mean first passage time solution of the Smoluchowski equation: application of relaxation dynamics in myoglobin. J. Chem. Phys. 112, 2516–2522 (2000)

    Article  Google Scholar 

  2. Bertram, R., Rubin, J.E.: Multi-timescale systems and fast-slow analysis. Math. Biosci. 287, 105–121 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bogoliubov, N.N., Mitropolsky, Y.A.: Asymptotic Methods in the Theory of Non-linear Oscillations. Gordon and Breach Science Publishers, New York (1961)

    Google Scholar 

  4. Brzeźniak, Z., Dhariwal, G.: Stochastic tamed Navier-Stokes equations on \({\mathbb{R}}^3\): the existence and the uniqueness of solutions and the existence of an invariant measure. J. Math. Fluid Mech. 22(2), Paper No. 23 (2020)

  5. Bryc, W.: Large deviations by the asymptotic value method, In: Pinsky, M. (ed.) Diffusion Processes and Related Problems in Analysis, vol. 1, pp. 447–472. Birkhäuser, Boston (1990)

  6. Budhiraja, A., Chen, J., Dupuis, P.: Large deviations for stochastic partial differential equations driven by a Poisson random measure. Stoch. Process. Appl. 123, 523–560 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Budhiraja, A., Dupuis, P.: A variational representation for positive functionals of infinite dimensional Brownian motion. Probab. Math. Stat. 20, 39–61 (2000)

    MathSciNet  MATH  Google Scholar 

  8. Budhiraja, A., Dupuis, P., Maroulas, V.: Large deviations for infinite dimensional stochastic dynamical systems. Ann. Probab. 36, 1390–1420 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cerrai, S.: A Khasminskii type averaging principle for stochastic reaction-diffusion equations. Ann. Appl. Probab. 19, 899–948 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cerrai, S., Freidlin, M.: Averaging principle for stochastic reaction-diffusion equations. Probab. Theory Relat. Fields 144, 137–177 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chueshov, I., Millet, A.: Stochastic 2D hydrodynamical type systems: well posedness and large deviations. Appl. Math. Optim. 61, 379–420 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  13. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Springer, New York (2000)

    MATH  Google Scholar 

  14. Dong, Z., Sun, X., Xiao, H., Zhai, J.: Averaging principle for one dimensional stochastic Burgers equation. J. Differ. Equ. 265, 4749–4797 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dong, Z., Zhang, R.: 3D tamed Navier-Stokes equations driven by multiplicative Lévy noise: existence, uniqueness and large deviations. J. Math. Anal. Appl. 492(1), 124404 (2020). (48 pp)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dupuis, P., Ellis, R.: A Weak Convergence Approach to the Theory of Large Deviations. Wiley, New York (1997)

    Book  MATH  Google Scholar 

  17. Dupuis, P., Spiliopoulos, K.: Large deviations for multiscale diffusion via weak convergence methods. Stoch. Process. Appl. 122(4), 1947–1987 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Weinan, E., Engquist, B.: Multiscale modeling and computations. Not. AMS 50, 1062–1070 (2003)

  19. Flandoli, F., Gatarek, D.: Martingale and stationary solutions for stochastic Navier-Stokes equations. Probab. Theory Relat. Fields 102(3), 367–391 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Freidlin, M.I.: Random perturbations of reaction-diffusion equations: the quasideterministic approximation. Trans. Am. Math. Soc. 305, 665–697 (1988)

    MathSciNet  MATH  Google Scholar 

  21. Freidlin, M.I., Wentzell, A.D.: Random perturbations of dynamical systems, Translated from the Russian by Joseph Szücs. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 260. Springer, New York (1984)

  22. Gao, H., Liu, H.: Well-posedness and invariant measures for a class of stochastic 3D Navier-Stokes equations with damping driven by jump noise. J. Differ. Equ. 267, 5938–5975 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gao, J., Li, S., Sun, X., Xie, Y.: Averaging principle for slow-fast stochastic 2D Navier-Stokes equation driven by Lévy noise. Math. Methods Appl. Sci. 44, 5475–5500 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gao, P.: Averaging Principle for Multiscale Stochastic Klein-Gordon-Heat System. J. Nonlinear Sci. 29(4), 1701–1759 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gao, P.: Averaging principle for complex Ginzburg-Landau equation perturbated by mixing random forces. SIAM J. Math. Anal. 53(1), 32–61 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Harvey, E., Kirk, V., Wechselberger, M., Sneyd, J.: Multiple timescales, mixed mode oscillations and canards in models of intracellular calcium dynamics. J. Nonlinear Sci. 21, 639–683 (2011)

    Article  MATH  Google Scholar 

  27. Heywood, J.G.: On a conjecture concerning the Stokes problem in nonsmooth domain. In: Adv. Math. Fluid Mech, pp. 195–205. Birkhäuser, Basel (2001)

  28. Hong, W., Li, S., Liu, W.: Freidlin-Wentzell type large deviation principle for multi-scale locally monotone SPDEs. SIAM J. Math. Anal. 53(6), 6517–6561 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hu, W., Salins, M., Spiliopoulos, K.: Large deviations and averaging for systems of slow-fast stochastic reaction-diffusion equations. Stoch. Partial Differ. Equ. Anal. Comput. 7, 808–874 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Khasminskii, R.Z.: On an averaging principle for Itô stochastic differential equations. Kibernetica 4, 260–279 (1968)

    Google Scholar 

  31. Liptser, R.: Large deviations for two scaled diffusions. Probab. Theory. Relat. Fields. 106, 71–104 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu, W.: Large deviations for stochastic evolution equations with small multiplicative noise. Appl. Math. Optim. 61, 27–56 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu, W.: Well-posedness of stochastic partial differential equations with Lyapunov condition. J. Differ. Equ. 255, 572–592 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Liu, W., Röckner, M.: Stochastic Partial Differential Equations: An Introduction. Universitext, Springer, New York (2015)

    Book  MATH  Google Scholar 

  35. Liu, W., Röckner, M., Sun, X., Xie, Y.: Averaging principle for slow-fast stochastic differential equations with time dependent locally Lipschitz coefficients. J. Differ. Equ. 268, 2910–2948 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. Majda, A., Timofeyev, I., Vanden-Eijnden, E.: A mathematical framework for stochastic climate models. Commun. Pure Appl. Math. 54, 891–974 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mastny, E.A., Haseltine, E.L., Rawling, J.B.: Two classes of quasi-steady-state model reductions for stochastic kinetics. J. Chem. Phys. 127, 094106 (2007)

    Article  Google Scholar 

  38. Mikikian, M., Cavarroc, M., Couedel, L., Tessier, Y., Boufendi, L.: Mixed-mode oscillations in complex-plasma instabilities. Phys. Rev. Lett. 100, 225005 (2008)

    Article  Google Scholar 

  39. Mikulevicius, R., Rozovskii, B.L.: Global \(L_2\)-solutions of stochastic Navier-Stokes equations. Ann. Probab. 33(1), 137–176 (2005)

    MathSciNet  MATH  Google Scholar 

  40. Pei, B., Inahama, Y., Xu, Y.: Averaging principle for fast-slow system driven by mixed fractional Brownian rough path. J. Differ. Equ. 301, 202–235 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pei, B., Xu, Y., Wu, J.-L.: Two-time-scales hyperbolic-parabolic equations driven by Poisson random measures: existence, uniqueness and averaging principles. J. Math. Anal. Appl. 447(1), 243–268 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Peng, X., Zhang, R.: Approximations of stochastic 3D tamed Navier-Stokes equations. Commun. Pure Appl. Anal. 19, 5337–5365 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  43. Peszat, S.: Large deviation principle for stochastic evolution equations. Probab. Theory Relat. Fields 98, 113–136 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  44. Puhalskii, A.A.: On large deviations of coupled diffusions with time scale separation. Ann. Probab. 44, 3111–3186 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Pukhalskii, A.A.: On the theory of large deviations. Theory Probab. Appl. 38, 490–497 (1993)

    Article  MathSciNet  Google Scholar 

  46. Ren, J., Zhang, X.: Freidlin-Wentzell’s large deviations for stochastic evolution equations. J. Funct. Anal. 254, 3148–3172 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. Röckner, M., Wang, F.-Y., Wu, L.: Large deviations for stochastic generalized porous media equations. Stoch. Process. Appl. 116, 1677–1689 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. Röckner, M., Xie, L.: Averaging principle and normal deviations for multiscale stochastic systems. Commun. Math. Phys. 383, 1889–1937 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  49. Röckner, M., Zhang, T.: Stochastic 3D tamed Navier-Stokes equations: existence, uniqueness and small time large deviation principles. J. Differ. Equ. 252, 716–744 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  50. Röckner, M., Zhang, T., Zhang, X.: Large deviations for stochastic tamed 3D Navier-Stokes equations. Appl. Math. Optim. 61(2), 267–285 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. Röckner, M., Zhang, X.: Stochastic tamed 3D Navier-Stokes equations: existence, uniqueness and ergodicity. Probab. Theory Relat. Fields 145(1–2), 211–267 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  52. Röckner, M., Zhang, X.: Tamed 3D Navier-Stokes equation: existence, uniqueness and regularity. Infin Dimens. Anal. Quantum Probab. Relat. Top. 12, 525–549 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  53. Schenke, A.: The tamed MHD equations. J. Evol. Equ. 21(1), 969–1018 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  54. Sun, X., Wang, R., Xu, L., Yang, X.: Large deviation for two-time-scale stochastic Burgers equation. Stoch. Dyn. 21(5), Paper No. 2150023 (2021)

  55. Sun, X., Xie, L., Xie, Y.: Averaging principle for slow-fast stochastic partial differential equations with Hölder continuous coefficients. J. Differ. Equ. 270, 476–504 (2021)

    Article  MATH  Google Scholar 

  56. Varadhan, S.R.S.: Large Deviations and Applications, vol. 46. CBMS-NSF Series in Applied Mathematics, SIAM, Philadelphia (1984)

  57. Veretennikov, A.Y.: On large deviations for SDEs with small diffusion and averaging. Stoch. Process. Appl. 89, 69–79 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  58. Wang, W., Roberts, A.J.: Average and deviation for slow-fast stochastic partial differential equations. J. Differ. Equ. 253, 1265–1286 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  59. Wang, W., Roberts, A.J., Duan, J.: Large deviations and approximations for slow-fast stochastic reaction-diffusion equations. J. Differ. Equ. 253, 3501–3522 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  60. Xiong, J., Zhai, J.: Large deviations for locally monotone stochastic partial differential equations driven by Lévy noise. Bernoulli 24(4A), 2842–2874 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  61. Xu, J., Liu, J., Miao, Y.: Strong averaging principle for two-time-scale SDEs with non-Lipschitz coefficients. J. Math. Anal. Appl. 468, 116–140 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  62. Xu, J., Liu, J., Liu, J., Miao, Y.: Strong averaging principle for two-time-scale stochastic McKean-Vlasov equations. Appl. Math. Optim. 84, S837–S867 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  63. Zhai, J., Zhang, T.: Large deviations for stochastic models of two-dimensional second grade fluids. Appl. Math. Optim. 75, 471–498 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  64. Zheng, Y., Huang, J.: Exponential mixing properties of the stochastic tamed 3D Navier-Stokes equation with degenerate noise. Z. Angew. Math. Phys. 71(4), Paper No. 125 (2020)

Download references

Acknowledgements

The authors would like to thank the referees for their very constructive suggestions and valuable comments. The research of W. Hong is supported by NSFC (No. 12171354). The research of S. Li is supported by NSFC (No. 12001247, 11931004), NSF of Jiangsu Province (No. BK20201019), NSF of Jiangsu Higher Education Institutions of China (No. 20KJB110015). The research of W. Liu is supported by NSFC (No. 12171208, 11831014, 12090011) and the PAPD of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihu Li.

Ethics declarations

Competing Interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, W., Li, M., Li, S. et al. Large Deviations and Averaging for Stochastic Tamed 3D Navier–Stokes Equations with Fast Oscillations. Appl Math Optim 86, 15 (2022). https://doi.org/10.1007/s00245-022-09895-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-022-09895-8

Keywords

Navigation