Skip to main content

Advertisement

Log in

Optimal Spatial Harvesting Strategy and Symmetry-Breaking

  • Published:
Applied Mathematics and Optimization Aims and scope Submit manuscript

Abstract

A reaction-diffusion model with logistic growth and constant effort harvesting is considered. By minimizing an intrinsic biological energy function, we obtain an optimal spatial harvesting strategy which will benefit the population the most. The symmetry properties of the optimal strategy are also discussed, and related symmetry preserving and symmetry breaking phenomena are shown with several typical examples of habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alikakos, N., Bates, P.W., Chen, X.: Convergence of the Cahn-Hillard equation to Hele-Shaw model. Arch. Ration. Mech. Anal. 128(2), 165–205 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Block, B.A., Dewar, H., Blackwell, S.B., Williams, T.D., Prince, E.D., Farwell, C.J., Boustany, A., Teo, S.L.H., Seitz, A., Walli, A., Fudge, D.: Migratory movements, depth preferences, and thermal biology of Atlantic bluefin tuna. Science 293, 1310–1314 (2001)

    Article  Google Scholar 

  3. Bates, P.W., Fife, P.C.: The dynamics of nucleating for the Cahn-Hilliard equation. SIAM J. Appl. Math. 53(4), 990–1008 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brauer, F., Castillo-Chávez, C.: Mathematical Models in Population Biology and Epidemiology. Texts in Applied Mathematics, vol. 40. Springer, New York (2001)

    MATH  Google Scholar 

  5. Cantrell, R.S., Cosner, C.: Diffusive logistic equations with indefinite weights: population models in disrupted environments. Proc. R. Soc. Edinb. Sect. A 112(3–4), 293–318 (1989)

    MATH  MathSciNet  Google Scholar 

  6. Cantrell, R.S., Cosner, C.: Spatial Ecology via Reaction-Diffusion Equation. Wiley Series in Mathematical and Computational Biology. Wiley, New York (2003)

    Google Scholar 

  7. Carr, J., Gurtin, M.E., Slemrod, M.: Structured phase transitions on a finite interval. Arch. Ration. Mech. Anal. 86(4), 317–351 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chanillo, S., Grieser, M., Imai, M., Kurata, K., Ohnishi, I.: Symmetry breaking and other phenomena in the optimization of eigenvalues for composite membranes. Commun. Math. Phys. 214, 315–337 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chanillo, S., Grieser, M., Kurata, K.: The free boundary problem in the optimization of composite membranes. Contemp. Math. 268, 61–81 (2000)

    MathSciNet  Google Scholar 

  10. Clark, C.W.: Mathematical Bioeconomics, The Optimal Management of Renewable Resources. Wiley, New York (1991)

    Google Scholar 

  11. Du, Y., Shi, J.: A diffusive predator-prey model with a protection zone. J. Differ. Equ. 229(1), 63–91 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fraenkel, L.E.: Introduction to Maximum Principles and Symmetry in Elliptic Equations. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  13. Gurtin, M.E., Matano, H.: On the structure of equilibrium phase transitions with the gradient theory of fluids. Q. Appl. Math. 46, 301–317 (1988)

    MATH  MathSciNet  Google Scholar 

  14. Harrell, E.M., Kröger, P., Kurata, K.: On the placement of an obstacle or a well so as to optimize the fundamental eigenvalue. SIAM J. Math. Anal. 33, 240–259 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kurata, K., Shibata, M., Sakamoto, S.: Symmetry-breaking phenomena in an optimization problem for some nonlinear elliptic equation. Appl. Math. Optim. 50, 259–278 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lieb, E., Loss, M.: Analysis. American Mathematical Society, Providence (1997)

    Google Scholar 

  17. Lou, Y., Yanagida, E.: Minimization of the principal eigenvalue for an elliptic boundary value problem with indefinite weight, and applications to population dynamics. Jpn. J. Ind. Appl. Math. 23(3), 275–292 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Murray, J.D.: Mathematical Biology. I. An Introduction, 3rd edn. Interdisciplinary Applied Mathematics, vol. 17. Springer, New York (2002)

    Google Scholar 

  19. Murray, J.D.: Mathematical Biology. II. Spatial Models and Biomedical Applications. Interdisciplinary Applied Mathematics, vol. 18. Springer, New York (2003)

    Google Scholar 

  20. Neubert, M.G.: Marine reserves and optimal harvesting. Ecol. Lett. 6, 843–849 (2003)

    Article  Google Scholar 

  21. Ni, W.-M., Wei, J.: On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems. Commun. Pure Appl. Math. 48(7), 731–768 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  22. Okubo, A., Levin, S.: Diffusion and Ecological Problems: Modern Perspectives, 2nd edn. Interdisciplinary Applied Mathematics, vol. 14. Springer, New York (2001)

    Google Scholar 

  23. Oruganti, S., Shi, J., Shivaji, R.: Diffusive logistic equation with constant yield harvesting. I: Steady states. Trans. Am. Math. Soc. 354(9), 3601–3619 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Shi, J., Shivaji, R.: Global bifurcation for concave semiposition problems. In: Goldstein, G.R., Nagel, R., Romanelli, S. (eds.) Advances in Evolution Equations. Proceedings in Honor of J.A. Goldstein’s 60th Birthday, pp. 385–398. Dekker, New York (2003)

    Google Scholar 

  25. Shi, J., Shivaji, R.: Persistence in reaction diffusion models with weak Allee effect. J. Math. Biol. 52(6), 807–829 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Skellam, J.G.: Random dispersal in theoretical populations. Biometrika 38, 196–218 (1951)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Kurata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurata, K., Shi, J. Optimal Spatial Harvesting Strategy and Symmetry-Breaking. Appl Math Optim 58, 89–110 (2008). https://doi.org/10.1007/s00245-007-9032-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-007-9032-7

Keywords

Navigation