Skip to main content

Advertisement

Log in

Earthworm Comet Assay for Assessing the Risk of Weathered Petroleum Hydrocarbon Contaminated Soils: Need to Look Further than Target Contaminants

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Earthworm toxicity assays contribute to ecological risk assessment and consequently standard toxicological endpoints, such as mortality and reproduction, are regularly estimated. These endpoints are not enough to better understand the mechanism of toxic pollutants. We employed an additional endpoint in the earthworm Eisenia andrei to estimate the pollutant-induced stress. In this study, comet assay was used as an additional endpoint to evaluate the genotoxicity of weathered hydrocarbon contaminated soils containing 520 to 1450 mg hydrocarbons kg−1 soil. Results showed that significantly higher DNA damage levels (two to sixfold higher) in earthworms exposed to hydrocarbon impacted soils. Interestingly, hydrocarbons levels in the tested soils were well below site-specific screening guideline values. In order to explore the reasons for observed toxicity, the contaminated soils were leached with rainwater and subjected to earthworm tests, including the comet assay, which showed no DNA damage. Soluble hydrocarbon fractions were not found originally in the soils and hence no hydrocarbons leached out during soil leaching. The soil leachate’s Electrical Conductivity (EC) decreased from an average of 1665 ± 147 to 204 ± 20 µS cm−1. Decreased EC is due to the loss of sodium, magnesium, calcium, and sulphate. The leachate experiment demonstrated that elevated salinity might cause the toxicity and not the weathered hydrocarbons. Soil leaching removed the toxicity, which is substantiated by the comet assay and soil leachate analysis data. The implication is that earthworm comet assay can be included in future eco (geno) toxicology studies to assess accurately the risk of contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander M (2000) Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ Sci Technol 34:4259–4265. doi:10.1021/es001069+

    Article  CAS  Google Scholar 

  • Bispo A, Jourdain MJ, Jauzein M (1999) Toxicity and genotoxicity of industrial soils polluted by polycyclic aromatic hydrocarbons (PAHs). Org Geochem 30:947–952

    Article  CAS  Google Scholar 

  • Bonnard M, Eom IC, Morel JL, Vasseur P (2009) Genotoxic and reproductive effects of an industrially contaminated soil on the earthworm Eisenia fetida. Environ Mol Mut 50:60–67

    Article  CAS  Google Scholar 

  • Brils JM, Huwer SL, Kater BJ, Schout PG, Harmsen J, Delvigne GA, Scholten MCT (2002) Oil effect in freshly spiked marine sediment on Vibrio fischeri, Corophium volutator, and Echinocardium cordatum. Environ Toxicol Chem 21:2242–2251

    Article  CAS  Google Scholar 

  • Button M, Jenkin GR, Bowman KJ, Harrington CF, Brewer TS, Jones GD, Watts MJ (2010) DNA damage in earthworms from highly contaminated soils: assessing resistance to arsenic toxicity by use of the Comet assay. Mut Res Gen Toxicol Environ Mut 696:95–100

    Article  CAS  Google Scholar 

  • Chapman H, Huston R, Gardner T, Chan A, Shawl G Chemical water quality and health risk assessment of urban rainwater tanks. In: 7th international conference on urban drainage modelling and the 4th international conference on water sensitive urban design; Book of Proceedings, 2006. Monash University, p 509

  • Čvančarová M, Křesinová Z, Cajthaml T (2013) Influence of the bioaccessible fraction of polycyclic aromatic hydrocarbons on the ecotoxicity of historically contaminated soils. J Hazard Mat 254–255:116–124. doi:10.1016/j.jhazmat.2013.03.060

    Google Scholar 

  • de Lapuente J, Lourenço J, Mendo SA, Borràs M, Martins MG, Costa PM, Pacheco M (2015) The Comet Assay and its applications in the field of ecotoxicology: a mature tool that continues to expand its perspectives. Frontiers Genet 6:180

    Article  Google Scholar 

  • Dhainaut A, Scaps P (2001) Immune defense and biological responses induced by toxics in Annelida. Can J Zool 79:233–253

    Article  CAS  Google Scholar 

  • Dhawan A, Bajpayee M, Parmar D (2009) Comet assay: a reliable tool for the assessment of DNA damage in different models. Cell Biol Toxicol 25:5–32

    Article  CAS  Google Scholar 

  • Di Marzio WD, Saenz ME, Lemière S, Vasseur P (2005) Improved single-cell gel electrophoresis assay for detecting DNA damage in Eisenia foetida. Environ Mol Mut 46:246–252

    Article  Google Scholar 

  • Di Toro DM, McGrath JA, Stubblefield WA (2007) Predicting the toxicity of neat and weathered crude oil: toxic potential and the toxicity of saturated mixtures. Environ Toxicol Chem 26:24–36

    Article  Google Scholar 

  • Dorn PB, Salanitro JP (2000) Temporal ecological assessment of oil contaminated soils before and after bioremediation. Chemosphere 40:419–426

    Article  CAS  Google Scholar 

  • Dorn PB, Vipond TE, Salanitro JP, Wisniewski HL (1998) Assessment of the acute toxicity of crude oils in soils using earthworms, microtox and plants. Chemosphere 37:845–860

    Article  CAS  Google Scholar 

  • Duan L, Naidu R, Thavamani P, Meaklim J, Megharaj M (2015) Managing long-term polycyclic aromatic hydrocarbon contaminated soils: a risk-based approach. Environ Sci Poll Res 22:8927–8941. doi:10.1007/s11356-013-2270-0

    Article  CAS  Google Scholar 

  • Echols BS, Smith A, Gardinali P, Rand G (2016) An evaluation of select test variables potentially affecting acute oil toxicity. Arch Environ Contam Toxicol 70:392–405

    Article  CAS  Google Scholar 

  • Eom I, Rast C, Veber A, Vasseur P (2007) Ecotoxicity of a polycyclic aromatic hydrocarbon (PAH)-contaminated soil. Ecotoxicol Environ Saf 67:190–205

    Article  CAS  Google Scholar 

  • Espinosa-Reyes G et al (2010) DNA damage in earthworms (Eisenia spp.) as an indicator of environmental stress in the industrial zone of Coatzacoalcos, Veracruz, Mexico. J Environ Sci Health A 45:49–55

    Article  CAS  Google Scholar 

  • Eyambe GS, Goven AJ, Fitzpatrick L, Venables BJ, Cooper EL (1991) A non-invasive technique for sequential collection of earthworm (Lumbricus terrestris) leukocytes during subchronic immunotoxicity studies. Lab Anim 25:61–67

    Article  CAS  Google Scholar 

  • Frampton GK, Jänsch S, Scott-Fordsmand JJ, Römbke J, Van den Brink PJ (2006) Effects of pesticides on soil invertebrates in laboratory studies: a review and analysis using species sensitivity distributions. Environ Toxicol Chem 25:2480–2489

    Article  CAS  Google Scholar 

  • Guerin TF (2002) Heavy equipment maintenance wastes and environmental management in the mining industry. J Environ Manag 66:185–199

    Article  Google Scholar 

  • Hanna SHS, Weaver R (2002) Earthworm survival in oil contaminated soil. Plant Soil 240:127–132

    Article  Google Scholar 

  • Jonker MT, Brils JM, Sinke AJ, Murk AJ, Koelmans AA (2006) Weathering and toxicity of marine sediments contaminated with oils and polycyclic aromatic hydrocarbons. Environ Toxicol Chem 25:1345–1353

    Article  CAS  Google Scholar 

  • Juhasz AL, Smith E, Waller N, Stewart R, Weber J (2010) Bioavailability of residual polycyclic aromatic hydrocarbons following enhanced natural attenuation of creosote-contaminated soil. Environ Pollut 158:585–591

    Article  CAS  Google Scholar 

  • Klobučar GIV, Štambuk A, Šrut M, Husnjak I, Merkaš M, Traven L, Cvetković Ž (2011) Aporrectodea caliginosa, a suitable earthworm species for field based genotoxicity assessment? Environ Pollut 159:841–849. doi:10.1016/j.envpol.2011.01.009

    Article  Google Scholar 

  • Kumaravel T, Jha AN (2006) Reliable Comet assay measurements for detecting DNA damage induced by ionising radiation and chemicals. Mut Res Gen Toxicol Environ Mut 605:7–16

    Article  CAS  Google Scholar 

  • Lanno R, Wells J, Conder J, Bradham K, Basta N (2004) The bioavailability of chemicals in soil for earthworms. Ecotoxicol Environ Saf 57:39–47

    Article  CAS  Google Scholar 

  • Li M, Liu Z, Xu Y, Cui Y, Li D, Kong Z (2009) Comparative effects of Cd and Pb on biochemical response and DNA damage in the earthworm Eisenia fetida (Annelida, Oligochaeta). Chemosphere 74:621–625

    Article  CAS  Google Scholar 

  • Lionetto MG, Calisi A, Schettino T (2012) Earthworm biomarkers as tools for soil pollution assessment. Soil health and land use management, InTech-Open Access Publisher in Science, Technology and Medicine, Rijeka (Croatia), pp 305–332

  • Manerikar RS, Apte AA, Ghole VS (2008) In vitro and in vivo genotoxicity assessment of Cr(VI) using comet assay in earthworm coelomocytes. Environ Toxicol Pharmacol 25:63–68

    Article  CAS  Google Scholar 

  • Naidu R et al (2013) Towards bioavailability-based soil criteria: past, present and future perspectives. Environ Sci Poll Res 1–7

  • Neff JM, Ostazeski S, Gardiner W, Stejskal I (2000) Effects of weathering on the toxicity of three offshore Australian crude oils and a diesel fuel to marine animals. Environ Toxicol Chem 19:1809–1821

    Article  CAS  Google Scholar 

  • NEPC (2011) National Environment Protection (Assessment of Site Contamination) Measure http://www.scew.gov.au/archive/site-contamination/pubs/asc-nepm/schedule_b1__guideline_on_investigation_levels_for_soil_and_groundwater__sep10.pdf

  • Neri M, Milazzo D, Ugolini D, Milic M, Campolongo A, Pasqualetti P, Bonassi S (2015) Worldwide interest in the comet assay: a bibliometric study. Mutagenesis 30:155–163

    Article  CAS  Google Scholar 

  • O’Reilly KT, Magaw RI, Rixey WG (2001) Predicting the effect of hydrocarbon and hydrocarbon-impacted soil on groundwater. Am Petrol Inst 14

  • Oboh B, Adeyinka Y, Awonuga S, Akinola M (2007) Impact of soil types and petroleum effluents on the earthworm. Eudrilus eugeniae, J Environ Biol, p 28

    Google Scholar 

  • OECD (2004) OECD guidelines for testing chemicals. Method 222, Earthworm reproduction test (Eisenia fetida/Eisenia Andrei). Paris, France

  • Owojori O, Reinecke A, Voua-Otomo P, Reinecke S (2009) Comparative study of the effects of salinity on life-cycle parameters of four soil-dwelling species (Folsomia candida, Enchytraeus doerjesi, Eisenia fetida and Aporrectodea caliginosa). Pedobiologia 52:351–360

    Article  CAS  Google Scholar 

  • Piola L, Fuchs J, Oneto ML, Basack S, Kesten E, Casabé N (2013) Comparative toxicity of two glyphosate-based formulations to Eisenia andrei under laboratory conditions. Chemosphere 91:545–551

    Article  CAS  Google Scholar 

  • Plaza G, Nalecz-Jawecki G, Ulfig K, Brigmon RL (2005) The application of bioassays as indicators of petroleum-contaminated soil remediation. Chemosphere 59:289–296

    Article  CAS  Google Scholar 

  • Qiao M, Chen Y, Wang C-X, Wang Z, Zhu Y-G (2007) DNA damage and repair process in earthworm after in vivo and in vitro exposure to soils irrigated by wastewaters. Environ Pollut 148:141–147

    Article  CAS  Google Scholar 

  • Rajaguru P, Kalaiselvi K, Palanivel M, Subburam V (2000) Biodegradation of azo dyes in a sequential anaerobic–aerobic system. Appl Microbiol Biotechnol 54:268–273

    Article  CAS  Google Scholar 

  • Ramadass K, Smith E, Palanisami T, Mathieson G, Srivastava P, Megharaj M, Naidu R (2015) Evaluation of constraints in bioremediation of weathered hydrocarbon-contaminated arid soils through microcosm biopile study. Int J Environ Sci Technol 12:3597–3612

    Article  CAS  Google Scholar 

  • Robidoux PY et al (2000) Chronic toxicity of energetic compounds in soil determined using the earthworm (Eisenia andrei) reproduction test. Environ Toxicol Chem 19:1764–1773

    Article  CAS  Google Scholar 

  • Salagovic J, Gilles J, Verschaeve L (1996) The comet assay for the detection of genotoxic damage in the earthworms: a promising tool for assessing the biological hazards of polluted sites. Folia Biol 42:17–21

    CAS  Google Scholar 

  • Salanitro JP et al (1997) Crude oil hydrocarbon bioremediation and soil ecotoxicity assessment. Environ Sci Technol 31:1769–1776

    Article  CAS  Google Scholar 

  • Sanchez-Hernandez J (2006) Earthworm biomarkers in ecological risk assessment. In: Reviews of environmental contamination and toxicology. Springer, New York, pp 85–126

  • Schaefer M (2003) Behavioural endpoints in earthworm ecotoxicology. J Soils Sed 3:79–84

    Article  CAS  Google Scholar 

  • Shastri S, Kamper S, Sonigra T, Hill T, Beales J (2012) Australia’s Mining Thirst. GTL Solution, Mumbai

    Google Scholar 

  • Shin KH, Jung H, Chang P, Choi H, Kim KW (2005) Earthworm toxicity during chemical oxidation of diesel-contaminated sand. Environ Toxicol Chem 24:1924–1929

    Article  CAS  Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  CAS  Google Scholar 

  • Smit MG et al (2009) Relating biomarkers to whole-organism effects using species sensitivity distributions: a pilot study for marine species exposed to oil. Environ Toxicol Chem 28:1104–1109

    Article  CAS  Google Scholar 

  • Speit G, Vasquez M, Hartmann A (2009) The comet assay as an indicator test for germ cell genotoxicity. Mut Res 681:3

    Article  CAS  Google Scholar 

  • Tang J, Wang M, Wang F, Sun Q, Zhou Q (2011) Eco-toxicity of petroleum hydrocarbon contaminated soil. J Environ Sci 23:845–851. doi:10.1016/s1001-0742(10)60517-7

    Article  CAS  Google Scholar 

  • Thavamani P, Smith E, Kavitha R, Mathieson G, Megharaj M, Srivastava P, Naidu R (2015) Risk based land management requires focus beyond the target contaminants: a case study involving weathered hydrocarbon contaminated soils. Environ Technol Innov 4:98–109. doi:10.1016/j.eti.2015.04.005

    Article  Google Scholar 

  • van Gestel CAM, van Dis WA (1988) The influence of soil characteristics on the toxicity of four chemicals to the earthworm Eisenia fetida andrei (Oligochaeta). Biol Fertil Soils 6:262–265. doi:10.1007/bf00260822

    Article  Google Scholar 

  • Van Gestel CAM, Van Dis WA, Van Breemen EM, Sparenburg PM (1989) Development of a standardized reproduction toxicity test with the earthworm species Eisenia fetida andrei using copper, pentachlorophenol, and 2,4-dichloroaniline. Ecotox Environ Saf 18:305–312

    Article  Google Scholar 

  • Zang Y, Zhong Y, Luo Y, Kong Z (2000) Genotoxicity of two novel pesticides for the earthworm, Eisenia fetida. Environ Pollut 108:271–278

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Project funded by Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavitha Ramadass.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramadass, K., Palanisami, T., Smith, E. et al. Earthworm Comet Assay for Assessing the Risk of Weathered Petroleum Hydrocarbon Contaminated Soils: Need to Look Further than Target Contaminants. Arch Environ Contam Toxicol 71, 561–571 (2016). https://doi.org/10.1007/s00244-016-0318-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-016-0318-0

Keywords

Navigation