Skip to main content
Log in

Induction and Recovery of Estrogenic Effects After Short-Term 17β-Estradiol Exposure in Juvenile Rainbow Trout (Oncorhynchus mykiss)

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Estrogenic compounds found in the aquatic environment include natural and synthetic estrogen hormones as well as other less potent estrogenic xenobiotics. In this study, a comprehensive approach was used to examine effects on fish endocrine system endpoints during a short-term xenoestrogen exposure as well as after post-exposure recovery. Rainbow trout (Oncorhynchus mykiss) were exposed to an aqueous 17β-estradiol (E2) concentration of 0.473 μg l−1 for 2 and 7 days (d) followed by a 14-d recovery period. At d2 and d7, plasma E2 concentrations in treated fish were 458- and 205-fold higher than in control fish and 23- and 16-fold higher than the exposure water concentration. E2 treatment resulted in significant increases in hepatosomatic index (HSI), plasma vitellogenin (VTG) protein concentrations, and liver VTG and estrogen receptor alpha mRNA levels. All of these parameters, with the exception of plasma VTG protein, returned to baseline values during the recovery period. Plasma cortisol concentrations were unaffected by treatment. This research shows varied time frames of the estrogen-responsive molecular-, biochemical-, and tissue-level alterations, as well as their persistence, in juvenile rainbow trout treated with aqueous E2. These results have implications for feral rainbow trout exposed to xenoestrogens and indicate the importance of evaluating a comprehensive suite of endpoints in assessing the impact of this type of environmental contaminant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aerni H, Kobler B, Rutishauser B, Wettstein F, Fischer R, Giger W et al (2004) Combined biological and chemical assessment of estrogenic activities in wastewater treatment plant effluents. Anal Bioanal Chem 378:688–696

    Article  CAS  Google Scholar 

  • Afonso LO, Smith JL, Ikonomou MG, Devlin RH (2002) Y-chromosomal DNA markers for discrimination of chemical substance and effluent effects on sexual differentiation in salmon. Environ Health Perspect 110:881–887

    Article  CAS  Google Scholar 

  • Arukwe A, Goksoyr A (2003) Eggshell and egg yolk proteins in fish: hepatic proteins for the next generation: oogenetic, population, and evolutionary implications of endocrine disruption. Comp Hepatol 2:4

    Article  Google Scholar 

  • Barton BA (2002) Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integr Comp Biol 42:517–525

    Article  CAS  Google Scholar 

  • Batty J, Lim R (1999) Morphological and reproductive characteristics of male Mosquitofish (Gambusia affinis holbrooki) inhabiting sewage-contaminated waters in New South Wales, Australia. Arch Environ Contam Toxicol 36:301–307

    Article  CAS  Google Scholar 

  • Benninghoff AD, Williams DE (2008) Identification of a transcriptional fingerprint of estrogen exposure in rainbow trout liver. Toxicol Sci 101:65–80

    Article  CAS  Google Scholar 

  • Bowman CJ, Kroll KJ, Hemmer MJ, Folmar LC, Denslow ND (2000) Estrogen-induced vitellogenin mRNA and protein in sheepshead minnow (Cyprinodon variegatus). Gen Comp Endocrinol 120:300–313

    Article  CAS  Google Scholar 

  • Brown KH, Schultz IR, Nagler JJ (2007) Reduced embryonic survival in rainbow trout resulting from paternal exposure to the environmental estrogen 17alpha-ethynylestradiol during late sexual maturation. Reproduction 134:659–666

    Article  CAS  Google Scholar 

  • Cakmak G, Togan I, Severcan F (2006) 17β-Estradiol induced compositional, structural and functional changes in rainbow trout liver, revealed by FT-IR spectroscopy: a comparative study with nonylphenol. Aquat Toxicol 77:53–63

    Article  CAS  Google Scholar 

  • Campbell B, Dickey J, Beckman B, Young G, Pierce A, Fukada H et al (2006) Previtellogenic oocyte growth in salmon: relationships among body growth, plasma insulin-like growth factor-1, estradiol-17beta, follicle-stimulating hormone and expression of ovarian genes for insulin-like growth factors, steroidogenic-acute regulatory protein and receptors for gonadotropins, growth hormone, and somatolactin. Biol Reprod 75:34–44

    Article  CAS  Google Scholar 

  • Celius T, Matthews JB, Giesy JP, Zacharewski TR (2000) Quantification of rainbow trout (Oncorhynchus mykiss) zona radiata and vitellogenin mRNA levels using real-time PCR after in vivo treatment with estradiol-17β or α-zearalenol. J Steroid Biochem 75:109–119

    Article  CAS  Google Scholar 

  • Correia A, Freitas S, Scholze M, Goncalves J, Booij P, Lamoree M et al (2007) Mixtures of estrogenic chemicals enhance vitellogenic response in sea bass. Environ Health Perspect 115(Suppl 1):115–121

    Article  Google Scholar 

  • Craft JA, Brown M, Dempsey K, Francey J, Kirby MF, Scott AP et al (2004) Kinetics of vitellogenin protein and mRNA induction and depuration in fish following laboratory and environmental exposure to oestrogens. Mar Environ Res 58:419–423

    Article  CAS  Google Scholar 

  • Dammann AA, Shappell NW, Bartell SE, Schoenfuss HL (2011) Comparing biological effects and potencies of estrone and 17β-estradiol in mature fathead minnows, Pimephales promelas. Aquat Toxicol 105:559–568

    Article  CAS  Google Scholar 

  • Ekman DR, Teng Q, Villeneuve DL, Kahl MD, Jensen KM, Durhan EJ et al (2008) Investigating compensation and recovery of Fathead Minnow (Pimephales promelas) exposed to 17alpha-ethynylestradiol with metabolite profiling. Environ Sci Technol 42:4188–4194

    Article  CAS  Google Scholar 

  • Fenske M, Maack G, Schaefers C, Segner H (2005) An environmentally relevant concentration of estrogen induces arrest of male gonad development in zebrafish, Danio rerio. Environ Toxicol Chem 24:1088–1098

    Article  CAS  Google Scholar 

  • Filby AL, Tyler CR (2005) Molecular characterization of estrogen receptors 1, 2a, and 2b and their tissue and ontogenic expression profiles in fathead minnow (Pimephales promelas). Biol Reprod 73:648–662

    Article  CAS  Google Scholar 

  • Filby AL, Tyler CR (2007) Appropriate “housekeeping” genes for use in expression profiling the effects of environmental estrogens in fish. BMC Mol Biol 8:10–22

    Article  Google Scholar 

  • Filby AL, Thorpe KL, Tyler CR (2006) Multiple molecular effect pathways of an environmental oestrogen in fish. J Mol Endocrinol 37:121–134

    Article  CAS  Google Scholar 

  • Filby AL, Thorpe KL, Maack G, Tyler CR (2007) Gene expression profiles revealing the mechanisms of anti-androgen- and estrogen-induced feminization in fish. Aquat Toxicol 81:219–231

    Article  CAS  Google Scholar 

  • Folmar LC, Denslow ND, Rao V, Chow M, Crain DA, Enblom J et al (1996) Vitellogenin induction and reduced serum testosterone concentrations in feral male carp (Cyprinus carpio) captured near a major metropolitan sewage treatment plant. Environ Health Perspect 104:1096–1101

    Article  CAS  Google Scholar 

  • Folmar LC, Hemmer M, Hemmer R, Bowman C, Kroll K, Denslow ND (2000) Comparative estrogenicity of estradiol, ethynyl estradiol and diethylstilbestrol in an in vivo, male sheepshead minnow (Cyprinodon variegatus), vitellogenin bioassay. Aquat Toxicol 49:77–88

    Article  CAS  Google Scholar 

  • Furtula V, Liu J, Chambers P, Osachoff H, Kennedy C, Harkness J (2012) Sewage treatment plants efficiencies in removal of sterols and sterol ratios as indicators of fecal contamination sources. Water Air Soil Pollut 223:1017–1031

    Article  CAS  Google Scholar 

  • Fuzzen MLM, Bernier NJ, Van Der Kraak G (2011) Differential effects of 17β-estradiol and 11-ketotestosterone on the endocrine stress response in zebrafish (Danio rerio). Gen Comp Endocrinol 170:365–373

    Article  CAS  Google Scholar 

  • Garcia-Reyero N, Raldua D, Quiros L, Llaveria G, Cerda J, Barcelo D et al (2004) Use of vitellogenin mRNA as a biomarker for endocrine disruption in feral and cultured fish. Anal Bioanal Chem 378:670–675

    Article  CAS  Google Scholar 

  • Hemmer MJ, Bowman CJ, Hemmer BL, Friedman SD, Marcovich D, Kroll KJ et al (2002) Vitellogenin mRNA regulation and plasma clearance in male sheepshead minnows, (Cyprinodon variegatus) after cessation of exposure to 17β-estradiol and p-nonylphenol. Aquat Toxicol 58:99–112

    Article  CAS  Google Scholar 

  • Henley DV, Lindzey J, Korach KS (2009) Steroid hormones. In: Melmed S, Conn PM (eds) Endocrinology: basic and clinical principles. Humana, Totowa, pp 49–65

    Google Scholar 

  • Herman RL, Kincaid HL (1988) Pathological effects of orally administered estradiol to rainbow trout. Aquaculture 72:165–172

    Article  CAS  Google Scholar 

  • Hook SE, Skillman AD, Small JA, Schultz IR (2006) Gene expression patterns in rainbow trout, Oncorhynchus mykiss, exposed to a suite of model toxicants. Aquat Toxicol 77:372–385

    Article  CAS  Google Scholar 

  • Hyndman KM, Biales A, Bartell SE, Schoenfuss HL (2010) Assessing the effects of exposure timing on biomarker expression using 17β-estradiol. Aquat Toxicol 96:264–272

    Article  CAS  Google Scholar 

  • Iwanowicz LR, Ottinger CA (2009) Estrogens: Estrogen receptors and their role as immunomodulators in fish. In: Zaccone G, Meseguer J, Garcia-Ayala A, Kapoor B (eds) Fish defenses. Science, Enfield, pp 277–322

    Chapter  Google Scholar 

  • Jeffries KM, Jackson LJ, Ikonomou MG, Habibi HR (2010) Presence of natural and anthropogenic organic contaminants and potential fish health impacts along two river gradients in Alberta, Canada. Environ Toxicol Chem 29:2379–2387

    Article  CAS  Google Scholar 

  • Jobling S, Sumpter JP, Sheahan D, Osborne JA, Matthiessen P (1996) Inhibition of testicular growth in rainbow trout (Oncorhynchus mykiss) exposed to estrogenic alkylphenolic chemicals. Environ Toxicol Chem 15:194–202

    CAS  Google Scholar 

  • Jobling S, Nolan M, Tyler CR, Brighty G, Sumpter JP (1998) Widespread sexual disruption in wild fish. Environ Sci Technol 32:2498–2506

    Article  CAS  Google Scholar 

  • Kime DE (1998) Endocrine disruption in fish. Kluwer Academic, Norwell

    Book  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB et al (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211

    Article  CAS  Google Scholar 

  • Kramer VJ, Miles-Richardson S, Pierens SL, Giesy JP (1998) Reproductive impairment and induction of alkaline-labile phosphate, a biomarker of estrogen exposure, in fathead minnows (Pimephales promelas) exposed to waterborne 17β-estradiol. Aquat Toxicol 40:335–360

    Article  CAS  Google Scholar 

  • Kristensen T, Baatrup E, Bayley M (2005) 17α-Ethinylestradiol reduces the competitive reproductive fitness of the male Guppy (Poecilia reticulata). Biol Reprod 72:150–156

    Article  CAS  Google Scholar 

  • Lai KM, Scrimshaw MD, Lester JN (2002) Biotransformation and bioconcentration of steroid estrogens by Chlorella vulgaris. Appl Environ Microbiol 68:859–864

    Article  CAS  Google Scholar 

  • Larsson DGJ, Adolfsson-Erici M, Parkkonen J, Pettersson M, Berg AH, Olsson PE et al (1999) Ethinyloestradiol — an undesired fish contraceptive? Aquat Toxicol 45:91–97

    Article  CAS  Google Scholar 

  • Le Guellec K, Lawless K, Valotaire Y, Kress M, Tenniswood M (1988) Vitellogenin gene expression in male rainbow trout (Salmo gairdneri). Gen Comp Endocrinol 71:359–371

    Article  Google Scholar 

  • Lee KE, Langer SK, Barber LB, Writer JH, Ferrey ML, Schoenfuss HL et al (2011) Endocrine active chemicals, pharmaceuticals, and other chemicals of concern in surface water, wastewater-treatment plant effluent, and bed sediment, and biological characteristics in selected streams, Minnesota—design, methods, and data, 2009. United States Geological Survey Data Series 575:1–54

    Google Scholar 

  • Lerner DT, Bjornsson BT, McCormick SD (2007) Aqueous exposure to 4-nonylphenol and 17beta-estradiol increases stress sensitivity and disrupts ion regulatory ability of juvenile Atlantic salmon. Environ Toxicol Chem 26:1433–1440

    Article  CAS  Google Scholar 

  • Madsen SS, Skovbølling S, Nielsen C, Korsgaard B (2004) 17-β Estradiol and 4-nonylphenol delay smolt development and downstream migration in Atlantic salmon, Salmo salar. Aquat Toxicol 68:109–120

    Article  CAS  Google Scholar 

  • Maunder RJ, Matthiessen P, Sumpter JP, Pottinger TG (2007) Rapid bioconcentration of steroids in the plasma of three-spined stickleback Gasterosteus aculeatus exposed to waterborne testosterone and 17b-oestradiol. J Fish Biol 70:678–690

    Article  CAS  Google Scholar 

  • Metcalfe CD, Metcalfe TL, Kiparissis Y, Koenig BG, Khan C, Hughes RJ et al (2001) Estrogenic potency of chemicals detected in sewage treatment plant effluents as determined by in vivo assays with Japanese medaka (Oryzias latipes). Environ Toxicol Chem 20:297–308

    CAS  Google Scholar 

  • Nagler JJ, Cavileer T, Sullivan J, Cyr DG, Rexroad C 3rd (2007) The complete nuclear estrogen receptor family in the rainbow trout: discovery of the novel ERalpha2 and both ERbeta isoforms. Gene 392:164–173

    Article  CAS  Google Scholar 

  • Pakdel F, Feon S, Le Gac F, Le Menn F, Valotaire Y (1991) In vivo estrogen induction of hepatic estrogen receptor mRNA and correlation with vitellogenin mRNA in rainbow trout. Mol Cell Endocrinol 75:205–212

    Article  CAS  Google Scholar 

  • Panter GH, Thompson RS, Sumpter JP (1998) Adverse reproductive effects in male fathead minnows (Pimephales promelas) exposed to environmentally relevant concentrations of the natural oestrogens, oestradiol and oestrone. Aquat Toxicol 42:243–253

    Article  CAS  Google Scholar 

  • Panter GH, Thompson RS, Sumpter JP (2000) Intermittent exposure of fish to estradiol. Environ Sci Technol 34:2756–2760

    Article  CAS  Google Scholar 

  • Parrott JL, Blunt BR (2005) Life-cycle exposure of fathead minnows (Pimephales promelas) to an ethinylestradiol concentration below 1 ng l−1 reduces egg fertilization success and demasculinizes males. Environ Toxicol 20:131–141

    Article  CAS  Google Scholar 

  • Pavlidis M, Dimitriou D, Dessypris A (1994) Testosterone and 17-beta-estradiol plasma fluctuations through spawning period in male and female rainbow trout, Oncorhynchus mykiss (Walbaum), kept under several photoperiod regimes. Ann Zool Fenn 31:319–327

    Google Scholar 

  • Persson P, Johannsson SH, Takagi Y, Björnsson BT (1997) Estradiol-17β and nutritional status affect calcium balance, scale and bone resorption, and bone formation in rainbow trout, Oncorhynchus mykiss. J Comp Physiol B 167:468–473

    Article  CAS  Google Scholar 

  • Rodgers-Gray TP, Jobling S, Kelly C, Morris S, Brighty G, Waldock MJ et al (2001) Exposure of juvenile roach (Rutilus rutilus) to treated sewage effluent induces dose-dependent and persistent disruption in gonadal duct development. Environ Sci Technol 35:462–470

    Article  CAS  Google Scholar 

  • Sabo-Attwood T, Kroll KJ, Denslow ND (2004) Differential expression of largemouth bass (Micropterus salmoides) estrogen receptor isotypes alpha, beta, and gamma by estradiol. Mol Cell Endocrinol 218:107–118

    Article  CAS  Google Scholar 

  • Schmid T, Gonzalez-Valero J, Rufli H, Dietrich DR (2002) Determination of vitellogenin kinetics in male fathead minnows (Pimephales promelas). Toxicol Lett 131:65–74

    Article  CAS  Google Scholar 

  • Schultz IR, Skillman A, Nicolas J, Cyr DG, Nagler JJ (2003) Short-term exposure to 17alpha-ethynylestradiol decreases the fertility of sexually maturing male rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 22:1272–1280

    CAS  Google Scholar 

  • Schwaiger J, Spieser OH, Bauer C, Ferling H, Mallow U, Kalbfus W et al (2000) Chronic toxicity of nonylphenol and ethinylestradiol: haematological and histopathological effects in juvenile common carp (Cyprinus carpio). Aquat Toxicol 51:69–78

    Article  CAS  Google Scholar 

  • Scott AP, Pinillos ML, Huertas M (2005) The rate of uptake of sex steroids from water by Tinca tinca is influenced by their affinity for sex steroid binding protein in plasma. J Fish Biol 67:182–200

    Article  CAS  Google Scholar 

  • Scott AP, Katsiadaki I, Kirby MF, Thain J (2006) Relationship between sex steroid and vitellogenin concentrations in flounder (Platichthys flesus) sampled from an estuary contaminated with estrogenic endocrine-disrupting compounds. Environ Health Perspect 114(Suppl 1):27–31

    Google Scholar 

  • Shelley LK, Osachoff HL, van Aggelen GC, Ross PS, Kennedy CJ (2013) Alteration of immune function endpoints and differential expression of estrogen receptor isoforms in leukocytes from 17β-estradiol exposed rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 180:24–32

    Article  CAS  Google Scholar 

  • Sousa A, Schonenberger R, Jonkers N, Suter M, Tanabe S, Barroso C (2010) Chemical and biological characterization of estrogenicity in effluents from WWTPs in Ria de Aveiro (NW Portugal). Arch Environ Contam Toxicol 58:1–8

    Article  CAS  Google Scholar 

  • Spengler P, Korner W, Metzger JW (2001) Substances with estrogenic activity in effluents of sewage treatment plants in southwestern Germany. 1. Chemical analysis. Environ Toxicol Chem 20:2133–2141

    Article  CAS  Google Scholar 

  • Staples CA, Dome PB, Klecka GM, Oblock ST, Harris LR (1998) A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36:2149–2173

    Article  CAS  Google Scholar 

  • Stoker C, Beldoménico PM, Bosquiazzo VL, Zayas MA, Rey F, Rodríguez H et al (2008) Developmental exposure to endocrine disruptor chemicals alters follicular dynamics and steroid levels in Caiman latirostris. Gen Comp Endocrinol 156:603–612

    Article  CAS  Google Scholar 

  • Sumpter JP, Johnson AC (2008) 10th Anniversary Perspective: reflections on endocrine disruption in the aquatic environment: from known knowns to unknown unknowns (and many things in between). J Environ Monitor 10:1476–1485

    Article  CAS  Google Scholar 

  • Ternes TA, Stumpf M, Mueller J, Haberer K, Wilken RD, Servos M (1999) Behavior and occurrence of estrogens in municipal sewage treatment plants—I. Investigations in Germany, Canada and Brazil. Sci Total Environ 225:81–90

    Article  CAS  Google Scholar 

  • Thomas-Jones E, Thorpe K, Harrison N, Thomas G, Morris C, Hutchinson T et al (2003) Dynamics of estrogen biomarker responses in rainbow trout exposed to 17beta-estradiol and 17alpha-ethinylestradiol. Environ Toxicol Chem 22:3001–3008

    Article  CAS  Google Scholar 

  • Thorpe KL, Cummings RI, Hutchinson TH, Scholze M, Brighty G, Sumpter JP et al (2003) Relative potencies and combination effects of steroidal estrogens in fish. Environ Sci Technol 37:1142–1149

    Article  CAS  Google Scholar 

  • Thorpe KL, Gross-Sorokin M, Johnson I, Brighty G, Tyler CR (2006) An assessment of the model of concentration addition for predicting the estrogenic activity of chemical mixtures in wastewater treatment works effluents. Environ Health Perspect 114:90–97

    Article  Google Scholar 

  • Thorpe KL, Benstead R, Hutchinson TH, Tyler CR (2007) Associations between altered vitellogenin concentrations and adverse health effects in fathead minnow (Pimephales promelas). Aquat Toxicol 85:176–183

    Article  CAS  Google Scholar 

  • Tyler CR, Pottinger TG, Santos E, Sumpter JP, Price SA, Brooks S et al (1996) Mechanisms controlling egg size and number in the rainbow trout, Oncorhynchus mykiss. Biol Reprod 54:8–15

    Article  CAS  Google Scholar 

  • Vajda AM, Barber LB, Gray JL, Lopez EM, Bolden AM, Schoenfuss HL et al (2011) Demasculinization of male fish by wastewater treatment plant effluent. Aquat Toxicol 103:213–221

    Article  CAS  Google Scholar 

  • Van den Belt K, Berckmans P, Vangenechten C, Verheyen R, Witters H (2004) Comparative study on the in vitro/in vivo estrogenic potencies of 17beta-estradiol, estrone, 17alpha-ethynylestradiol and nonylphenol. Aquat Toxicol 66:183–195

    Article  Google Scholar 

  • Vermeirssen ELM, Korner O, Schonenberger R, Burkhardt-Holm P (2005) Characterization of environmental estrogens in river water using a three pronged approach: active and passive water sampling and the analysis of accumulated estrogens in the bile of caged fish. Environ Sci Technol 39:8191–8198

    Article  CAS  Google Scholar 

  • Williams TD, Diab AM, George SG, Sabine V, Chipman JK (2007) Gene expression responses of European flounder (Platichthys flesus) to 17-β estradiol. Toxicol Lett 168:236–248

    Article  CAS  Google Scholar 

  • Williams RJ, Churchley JH, Kanda R, Johnson AC (2012) Comparing predicted against measured steroid estrogen concentrations and the associated risk in two United Kingdom river catchments. Environ Toxicol Chem 31:892–898

    Article  CAS  Google Scholar 

  • Wiseman S, Osachoff H, Bassett E, Malhotra J, Bruno J, van Aggelen G et al (2007) Gene expression pattern in the liver during recovery from an acute stressor in rainbow trout. Comp Biochem Physiol Part D Genomics Proteomics 2:234–244

    Article  Google Scholar 

  • Zaroogian G, Gardner G, Borsay Horowitz D, Gutjahr-Gobell R, Haebler R, Mills L (2001) Effect of 17beta-estradiol, o, p-DDT, octylphenol and p, p-DDE on gonadal development and liver and kidney pathology in juvenile male summer flounder (Paralichthys dentatus). Aquat Toxicol 54:101–112

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding was provided by the National Science and Engineering Research Council to C. Kennedy and graduate fellowships to H. Osachoff and L. Shelley. We thank the BC Provincial Government for a Pacific Leaders Fellowship to H. Osachoff. We acknowledge the help we received from the following people: K. Webster, L. Brown, R. Skirrow, G. Lush, C. Buday, L. Wong, A. Goulding, J. Trowell, L. Rear, and the Chemistry Section at the Pacific Environmental Science Centre (North Vancouver, British Columbia, Canada).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Kennedy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osachoff, H.L., Shelley, L.K., Furtula, V. et al. Induction and Recovery of Estrogenic Effects After Short-Term 17β-Estradiol Exposure in Juvenile Rainbow Trout (Oncorhynchus mykiss). Arch Environ Contam Toxicol 65, 276–285 (2013). https://doi.org/10.1007/s00244-013-9890-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-013-9890-8

Keywords

Navigation