Skip to main content

Advertisement

Log in

An Assessment of Three Harpacticoid Copepod Species for Use in Ecotoxicological Testing

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The relatively short life cycles of harpacticoid copepods makes them appropriate animals for use in tests that rapidly assess the acute, sublethal, or chronic effects of sediment contaminants. In this study, four harpacticoid copepod species (Nitocra spinipes, Tisbe tenuimana, Robertgurneya hopkinsi, and Halectinosoma sp.) were isolated from clean marine sediments, and procedures for laboratory culturing were developed. Halectinosoma sp. was abandoned due to handling difficulties. For the remaining species, the influence of food type and quantity on life-cycle progression was assessed. A mixed diet, comprising two species of algae (Tetraselmis sp. and Isochrysis sp.) and fish food (Sera Micron) was found to maintain healthy cultures and was fed during laboratory tests. Water-only exposure to dissolved copper (Cu) showed that the times (range) required to cause 50% lethality (LT50) were 24 (22–27) h at 50 μg Cu/l for T. tenuimana; 114 (100–131) and 36 (32–40) h for 200 and 400 μg Cu/l, respectively, for N. spinipes; and 119 (71–201) and 25 (18–33) h for 200 and 400 μg Cu/l, respectively, for R. hopkinsi. 96-h LC50 (concentration causing 50% lethality) were also determined for adult N. spinipes exposed to cadmium, copper, zinc, ammonia, and phenol. A ranking system was generated based on the ease handling and culturing, rate of maturity, food selectivity and sensitivity to Cu. From this ranking, N. spinipes was determined to be the most suitable species for use in developing sediment-toxicity tests. The measurement of total reproductive output of N. spinipes during 10-day exposure to whole sediment was found to provide a useful end point for assessing the effects of sediment contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams MS, Stauber JL (2004) Development of a whole-sediment toxicity test using a benthic marine microalga. Environ Toxicol Chem 23:1957–1968

    Article  CAS  Google Scholar 

  • American Society for Testing, Materials (2003) Standard test method for measuring the toxicity of sediment-associated contaminants with estuarine and marine invertebrates. ASTM Standard No. E 1367–03. American Society for Testing and Materials, Philadelphia, PA

    Google Scholar 

  • American Society for Testing, Materials (2004) Standard guide for conducting renewal microplate-based life-cycle toxicity tests with a marine meiobenthic copepod. ASTM Standard No. E 2317–04. American Society for Testing and Materials, Philadelphia, PA

    Google Scholar 

  • Anderson T, Pond D (2000) Stoichiometric theory extended to micronutrients: comparison of the roles of essential fatty acids, carbon, and nitrogen in the nutrition of marine copepods. Limnol Oceanogr 45:1162–1167

    Article  CAS  Google Scholar 

  • Barka S, Pavillion JF, Amiard JC (2001) Influence of different essential and non-essential metals on MTLP levels in the copepod Tigriopus brevicornis. Comp Biochem Physiol C Toxicol Pharmacol 128:479–493

    Article  CAS  Google Scholar 

  • Barnes H, Stanbury F (1948) The toxic action of copper and mercury salts both separately and when mixed on the harpacticoid copepod, Nitocra spinipes (Boeck). J Exp Biol 25:270–275

    Google Scholar 

  • Barnes M, Correll R, Stevens D (2003) A simple spreadsheet for estimating low-effect concentrations and associated confidence intervals with logistic dose-response curves. CSIRO Mathematical and Information Sciences, Canberra, Australia

    Google Scholar 

  • Bejarano AC, Maruya KA, Thomas Chandler G (2004) Toxicity assessment of sediments associated with various land-uses in coastal South Carolina, USA, using a meiobenthic copepod bioassay. Mar Pollut Bull 49:23–32

    Article  CAS  Google Scholar 

  • Bengtsson B-E (1978) Use of a harpacticoid copepod in toxicity tests. Mar Pollut Bull 9:238–241

    Article  CAS  Google Scholar 

  • Brown RJ, Rundle SD, Hutchinson TH, Williams TD, Jones MB (2005) A microplate freshwater copepod bioassay for evaluating acute and chronic effects of chemicals. Environ Toxicol Chem 24:1528–1531

    Article  CAS  Google Scholar 

  • Buttino I (1994) The effect of low concentrations of phenol and ammonia on egg-production rates, fecal pellet production and egg viability of the calanoid copepod Acartia clausi. Mar Biol 119:629–634

    Article  CAS  Google Scholar 

  • Castro H, Ramalheira F, Quintino V, Rodrigues AM (2006) Amphipod acute and chronic sediment toxicity assessment in estuarine environmental monitoring: an example from Ria de Aveiro, NW Portugal. Mar Pollut Bull 53:91–99

    Article  CAS  Google Scholar 

  • Chandler G, Green A (1996) A 14-day harpacticoid copepod reproduction bioassay for laboratory and field contaminated muddy sediments. In: Ostrander GE (ed) Techiques in aquatic toxicology. CRC Press Boca Raton, FL, pp 23–39

    Google Scholar 

  • Chandler G, Green A (2001) Developmental stage-specific life-cycle bioassay for assessment of sediment-associated toxicant effects on benthic copepod production. Environ Toxicol Chem 20:171–178

    Article  CAS  Google Scholar 

  • Dahl U, Lind C, Gorokhova E, Eklund B, Breitholtz M (2009) Food quality effects on copepod growth and development: implications for bioassays in ecotoxicological testing. Ecological Environ Safe 72:351–357

    Article  CAS  Google Scholar 

  • De Troch M, Chepurnov V, Gheerardyn H, Vanreusel A, Olafsson E (2006) Is diatom size selection by harpacticoid copepods related to grazer body size? J Exp Mar Biol Ecol 332:1–11

    Article  Google Scholar 

  • De Troch M, Grego M, Chepurnov V, Vincx M (2007) Food patch size, food concentration and grazing efficiency of the harpacticoid Paramphiascella fulvofasciata (Crustacea, Copepoda). J Exp Mar Biol Ecol 343:210–216

    Article  Google Scholar 

  • Di Marzio WD, Castaldo D, Pantani C, Di Cioccio A, Di Lorenzo T, Saenz ME et al (2009) Relative sensitivity of hyporheic copepods to chemicals. Bull Environ Contam Toxicol 82:488–491

    Article  CAS  Google Scholar 

  • Diz FR, Araújo CVM, Moreno-Garrido I, Hampel M, Blasco J (2009) Short-term toxicity tests on the harpacticoid copepod Tisbe battagliai: lethal and reproductive endpoints. Ecotox Environ Safe 72:1881–1886

    Article  CAS  Google Scholar 

  • Finkelstein K, Kern J (2005) Improvement in correlation between chemistry and toxicity using the 28-day sediment toxicity test. Contaminated Sediments―2005: finding achievable risk reduction solutions. Proceedings of the Third International Conference on Remediation of Contaminated Sediments, New Orleans, LA, January 24–27, 2005. Battelle Press, Columbus, OH

  • Finney D (1978) Statistical method in biological assay, 3rd ed. Charles Griffin, London, UK

    Google Scholar 

  • Greenstein D, Bay S, Anderson B, Chandler G, Farrar J, Keppler C et al (2008) Comparison of methods for evaluating acute and chronic toxicity in marine sediments. Environ Toxicol Chem 27:933–944

    Article  CAS  Google Scholar 

  • Hagopian-Schlekat T, Chandler G, Shaw T (2001) Acute toxicity of five sediment-associated metals, individually and in a mixture, to the estuarine meiobenthic harpacticoid copepod Amphiascus tenuiremis. Mar Environ Res 51:247–264

    Article  CAS  Google Scholar 

  • Ho KT, Kuhn A, Pelletier MC, Hendricks TL, Helmstetter A (1999) pH dependent toxicity of five metals to three marine organisms. Environ Toxicol 14:235–240

    Article  CAS  Google Scholar 

  • Hughes R (1980) Optimal foraging theory in the marine context. Oceanogr Mar Biol Ann Rev 18:423–481

    Google Scholar 

  • Ianora A, Miralto A, Poulet SA, Carotenuto Y, Buttino I, Romano G et al (2004) Aldehyde supression of copepod recruitment in blooms of a ubiquitous planktonic diatom. Nature 429:403–407

    Article  CAS  Google Scholar 

  • Ismar SMH, Hansen T, Sommer U (2008) Effect of food concentration and type of diet on Acartia survival and naupliar development. Mar Biol 154:335–343

    Article  Google Scholar 

  • Kennedy AJ, Steevens JA, Lotufo GR, Farrar JD, Reiss MR, Kropp RK et al (2009) A comparison of acute and chronic toxicity methods for marine sediments. Mar Environ Res 68:118–127

    Article  CAS  Google Scholar 

  • Kleppel G (1993) On the diets of calanoid copepods. Mar Ecol Prog Ser 99:183

    Article  Google Scholar 

  • Koski M, Breteler WK, Schogt N (1998) Effect of food quality on rate of growth and development of the pelagic copepod Pseudocalanus elongatus (Copepoda, Calanoida). Mar Ecol Prog Ser 170:169–187

    Article  Google Scholar 

  • Koski M, Breteler W, Schogt N, Gonzalez S, Jakobsen H (2006) Life-stage-specific differences in exploitation of food mixtures: diet mixing enhances copepod egg production but not juvenile development. J Plankton Res 28:919–936

    Article  CAS  Google Scholar 

  • Kwok KWH, Leung KMY, Bao VWW, Lee J-S (2008) Copper toxicity in the marine copepod Tigropus japonicus: low variability and high reproducibility of repeated acute and life-cycle tests. Mar Pollut Bull 57:632–636

    Article  CAS  Google Scholar 

  • Lacoste A, Poulet SA, Cueff A, Kattner G, Ianora A, Laabir M (2001) New evidence of the copepod maternal food effects on reproduction. J Exp Mar Biol Ecol 259:85–107

    Article  Google Scholar 

  • Linden E, Bengtsson BE, Svanberg O, Sundstrom G (1979) The acute toxicity to 78 chemicals and pesticide formulations against two brackish water organisms, the bleak (Alburnus alburnus) and the harpacticoid (Nitocra spinipes). Chemosphere 11:843–851

    Article  Google Scholar 

  • Linnik P, Zubenko I (2000) Role of bottom sediments in the secondary pollution of aquatic environments by heavy-metal compounds. Lakes & Reservoirs: Res Manag 5:11–21

    Article  Google Scholar 

  • Mann RM, Hyne RV, Spadaro DA, Simpson SL (2009) Development and application of a rapid amphipod reproduction test for sediment-quality assessment. Environ Toxicol Chem 28:1244–1254

    Article  CAS  Google Scholar 

  • McGee B, Fisher D, Wright D, Yonkos L, Ziegler G, Turley S et al (2004) A field test and comparison of acute and chronic sediment toxicity tests with the estuarine amphipod Leptocheirus plumulosus in Chesapeake Bay, USA. Environ Toxicol Chem 23:1751–1761

    Article  CAS  Google Scholar 

  • Miralto A, Barone G, Romano G, Poulet S, Ianora A, Russo GL et al (1999) The insidious effect of diatoms on copepod reproduction. Nature 402:173–176

    Article  CAS  Google Scholar 

  • Montagna PA, Blanchard GF, Dinet A (1995) Effect of production and biomass of intertidal microphytobenthos on meiofaunal grazing rates. J Exp Mar Biol Ecol 185:149–165

    Article  Google Scholar 

  • Moreira S, Moreira-Santos M, Guilhermino L, Ribeiro R (2005) A short-term sublethal in situ toxicity assay with Hediste diversicolor (Polychaeta) for estuarine sediments based on postexposure feeding. Environ Toxicol Chem 24:2010–2018

    Article  CAS  Google Scholar 

  • Norsker N-H, Støttrup JG (1994) The importance of dietary HUFAs for fecundity and HUFA content in the harpacticoid, Tisbe holothuriae Humes. Aquaculture 125:155–166

    Article  CAS  Google Scholar 

  • Rhodes A (2003). Methods for mass culture for high density batch culture of Nitokra lacustris, a marine harpacticoid copepod. The Big Fish Bang: Proceedings of the 26th Annual Larval Fish Conference, Institute of Marine Research, Bergen, Norway

  • Rice C, Plesha P, Casillas E, Misitano D, Meador J (1995) Growth and survival of three marine invertebrate species in sediments from the Hudson–Raritan Estuary, New York. Environ Toxicol Chem 14:1931–1940

    CAS  Google Scholar 

  • Saage A, Vadstein O, Sommer U (2009) Feeding behaviour of adult Centropages hamatus (Copepoda, Calanoida): functional response and selective feeding experiments. J Sea Res 62:16–21

    Article  Google Scholar 

  • Scarlett A, Rowland SJ, Canty M, Smith EL, Galloway TS (2007) Method for assessing the chronic toxicity of marine and estuarine sediment-associated contaminants using the amphipod Corophium volutator. Mar Environ Res 63:457–470

    Article  CAS  Google Scholar 

  • Schipper CA, Dubbeldam M, Feist SW, Rietjens I, Murk AT (2008) Cultivation of the heart urchin Echinocardium cordatum and validation of its use in marine toxicity testing for environmental risk assessment. J Exp Mar Biol Ecol 364:11–18

    Article  CAS  Google Scholar 

  • Simpson S (2001) A rapid screening method for acid volatile sulfide in sediments. Environ Toxicol Chem 20:2657–2661

    Article  CAS  Google Scholar 

  • Simpson S, Angel B, Jolley D (2004) Metal equilibration in laboratory-contaminated (spiked) sediments used for the development of whole-sediment toxicity tests. Chemosphere 54:597–609

    Article  CAS  Google Scholar 

  • Simpson S, Batley G, Chariton A, Stauber J, King C, Chapman J et al (2005) Handbook for sediment quality assessment. Environmental Trust, Canberra, Australia

    Google Scholar 

  • Smit M, Kater B, Jak R, Van den Heuvel-Greve M (2006) Translating bioassay results to field population responses using a Leslie-matrix model for the marine amphipod Corophium volutator. Ecol Model 196:515–526

    Article  CAS  Google Scholar 

  • Smith S, Furay V, Layiwola P, Menezes-Filho J (1994) Evaluation of the toxicity and quantitative structure-activity relationships (QSAR) of chlorophenols to the copepodid stage of a marine copepod (Tisbe battagliai) and two species of benthic flatfish, the flounder (Platichthys flesus) and sole (Solea solea). Chemosphere 28:825–836

    Article  CAS  Google Scholar 

  • Spadaro D, Micevska T, Simpson S (2008) Effect of nutrition on toxicity of contaminants to the epibenthic amphipod Melita plumulosa. Arch Environ Contam Toxicol 55:593–602

    Article  CAS  Google Scholar 

  • Tang K, Taal M (2005) Trophic modification of food quality by heterotrophic protists: species-specific effects on copepod egg production and egg hatching. J Exp Mar Biol Ecol 318:85–98

    Article  Google Scholar 

  • van den Heuvel-Greve M, Postma J, Jol J, Kooman H, Dubbeldam M, Schipper C et al (2007) A chronic bioassay with the estuarine amphipod Corophium volutator: test method description and confounding factors. Chemosphere 66:1301–1309

    Article  Google Scholar 

  • Weiss G, McManus G, Harvey H (1996) Development and lipid composition of the harpacticoid copepod Nitocra spinipes reared on different diets. Mar Ecol Prog Ser 132:57–61

    Article  CAS  Google Scholar 

  • Wyckmans M, Chepurnov VA, Vanreusel A, De Troch M (2007) Effects of food diversity on diatom selection by harpacticoid copepods. J Exp Mar Biol Ecol 345:119–128

    Article  Google Scholar 

Download references

Acknowledgments

Specimens of the cultured copepod species were identified by Tomislav Karanovic from the University of Tasmania. Funding for the study was provided by an Australian Postgraduate Award and a CSIRO top-up scholarship. Ian Hamilton is thanked for assisting with field work and culturing of copepods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Ward.

Electronic supplementary material

Below is the link to the electronic supplementary material.

244_2011_9646_MOESM1_ESM.doc

Plate 1. Photographs of (i) N. spinipes (Boeck 1864) (approximate 24-day life cycle), (ii) T. tenuimana (Giesbrecht 1902) (approximate 28-day life cycle), and (iii) R. hopkinsi (Lang 1965) (approximate 35-day life cycle). Scale bar = 250 μm.(DOC 1210 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ward, D.J., Perez-Landa, V., Spadaro, D.A. et al. An Assessment of Three Harpacticoid Copepod Species for Use in Ecotoxicological Testing. Arch Environ Contam Toxicol 61, 414–425 (2011). https://doi.org/10.1007/s00244-011-9646-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-011-9646-2

Keywords

Navigation