Skip to main content

Advertisement

Log in

Acute Toxicity Tests with the Tropical Cladoceran Pseudosida ramosa: The Importance of Using Native Species as Test Organisms

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Cladocerans have long been used for toxicological assessments of a diverse range of substances. The use of cladocerans in toxicity tests has many advantages, such as their short life cycle, parthenogenetic reproduction (clones), and high sensitivity to toxicants, as well as the easy laboratory maintenance of cultures. The most commonly used cladoceran in ecotoxicological studies of aquatic environments is undoubtedly Daphnia magna. Standard methods using cladocerans as test organisms have been documented and adopted by major international organizations and regulatory agencies of many countries. However, today there is a growing need for improving test organisms and protocols to better reflect local species sensitivity or site-specific conditions. The present study aimed to assess the tropical species Pseudosida ramosa as a potential test organism for ecotoxicological purposes, by carrying out standard acute tests with six reference compounds. Based on the results obtained in the present study and in comparison with other cladocerans, it was found that P. ramosa was more sensitive than Daphnia magna, had a sensitivity similar to that of Daphnia similis, and was less sensitive compared to Ceriodaphnia dubia and C. silvestrii (Neotropical species), except for the salts, sodium chloride and potassium chloride. Also, when P. ramosa was compared with test organisms of other taxonomic groups, we observed that it was more sensitive than most of the others, from simple coelenterates to complex fish. Considering these results and the wide distribution of the cladoceran P. ramosa in tropical and subtropical regions, we suggest that this species can be adopted as a test organism, being a good substitute for the exotic daphnid D. magna, for monitoring of toxicants in freshwaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • ABNT (Associação Brasileira de Normas Técnicas) (2004) Método de ensaio com Daphnia spp (Crustacea, Cladocera). ABNT NBR 12713

  • Adema MM (1978) Daphnia magna as a test animal in acute and chronic toxicity tests. Hydrobiologia 59:125–134

    Article  CAS  Google Scholar 

  • Aguilar JF, Rosim-Monteiro RT (2002) Estratégias para avaliação da toxicidade da água de abastecimento público do município de Piracicaba através de bioensaios. Anais 32:38–42

    Google Scholar 

  • Argemi F, Cianni N, Porta A (2005) Disrupción endocrina: perspectivas ambientales e salud pública. Acta Bioquim Clin Latinoam 39(3):291–300

    CAS  Google Scholar 

  • ASTM (American Society for Testing, Materials) (2001) Standard guide for conducting acute toxicity testing on test materials with fishes, macroinvertebrates, and amphibians. E729–E796. ASTM, West Conshohocken, PA

    Google Scholar 

  • Bailey HC, Miller JL, Miller MJ, Wiborg LC (1997) Joint acute toxicity of diazinon and chlorpyrifos to Ceriodaphnia dubia. Environ Toxicol Chem 16:2304–2308

    CAS  Google Scholar 

  • Baillieul M, Blust R (1999) Analysis of the swimming velocity of cadmium-stressed Daphnia magna. Aquat Toxicol 44:245–254

    Article  CAS  Google Scholar 

  • Bellas J, Beiras R, Mariño-Balsa JC, Fernández N (2005) Toxicity of organic compounds to marine invertebrate embryos and larvae: a comparison between the sea urchin embryogenesis bioassay and alternative test species. Ecotoxicology 14:337–353

    Article  CAS  Google Scholar 

  • Belluck DA, Benjamin SL, Dawson T (1991) Groundwater contamination by atrazina and its metabolites: Risk assessment, policy, and legal implications. In: Somasundaram L, Coats JR (eds) Pesticide transformation products: fate and significance in the environment. ACS, Washington, DC, pp 276–280

  • Bengtsson BE (1978) Use of a harpacticoid copepod in toxicity tests. Mar Pollut Bull 9:238–241

    Article  CAS  Google Scholar 

  • Biesinger KE, Christensen GM (1972) Effects of various metals on survival, growth, reproduction, and metabolism of Daphnia magna. J Fish Res Board Can 29(12):1691–1700

    CAS  Google Scholar 

  • Böhrer MBC (1995) Biomonitoramento da comunidade zooplanctônica das lagoas de tratamento terciário do sistema de tratamento dos efluentes líquidos das indústrias do Pólo Petroquímico do Sul, Triunfo, RS. Ph.D. thesis, Universidade Federal de São Carlos, São Carlos, Brazil

  • Boyden CR (1974) Trace element content and body size in molluscs. Nature 251:311–314

    Article  CAS  Google Scholar 

  • Brooks BW, Stanley JK, White JC, Turner PK, Wu KB, La Point TW (2003) Laboratory and field responses to cadmium: an experimental study in effluent-dominated stream mesocosms. Environ Toxicol Chem 24:1057–1064

    Google Scholar 

  • Buikema AL, Cairns J, Sullivan GW (1974) Evaluation of Philodina acuticornis (Rotifera) as a bioassay organism for heavy metals. Water Resour Bull 10(4):648–661

    CAS  Google Scholar 

  • Carney GC, Shore P, Chandra H (1986) The uptake of cadmium from a dietary and soluble source by the crustacean Daphnia magna. Environ Res 39:290–298

    Article  CAS  Google Scholar 

  • César A, Guirão LM, Vita R, Marin A (2002) Sensitivity of mediterranean amphipods and sea urchins to reference toxicants. Cienc Mar 28(4):407–417

    Google Scholar 

  • Chem Service (2006) http://web1.chemservice.com/MSDSLookUp.nsf/MSDSDisplay/E5E735A61022C9BD8-525756C000EA766?opendocument. Accessed 15 March 2006

  • Cowgill UM, Milazzo DP (1990) The sensitivity of two cladocerans to water quality variables, salinity and hardness. Arch Hydrobiol 120:185–196

    Google Scholar 

  • Do Hong LC, Becker-Van Slooten K, Tarradellas J (2004) Tropical ecotoxicity testing with Ceriodaphnia cornuta. Environ Toxicol 19:497–504

    Article  CAS  Google Scholar 

  • Downing HF, Delorenzo ME, Fulton MH, Scott GI, Madden CH, Kucklick JR (2004) Effects of the agricultural pesticides atrazine, chlorothalonil, and endosulfan on South Florida microbial assemblages. Ecotoxicology 13:245–260

    Article  CAS  Google Scholar 

  • Dyer SD, Lauth JR, Morrall SW, Herzog RR, Cherry DS (1997) Development of a chronic toxicity structure-activity relationship for alkyl sulfates. Environ Toxic Water 12:295–303

    Article  CAS  Google Scholar 

  • Eisler R (1989) Atrazine hazards to fish, wildlife and invertebrates: a sinoptic review. Contam Hazard Rev 18:1–55

    Google Scholar 

  • Elmoor-Loureiro LMA (1997) Manual de Identificação de Cladóceros Límnicos do Brasil. Editora Universa, Brasília

    Google Scholar 

  • Emmanuel E, Hannab K, Bazinc C, Keckd G, Clémenta B, Perrodina Y (2005) Fate of glutaraldehyde in hospital wastewater and combined effects of glutaraldehyde and surfactants on aquatic organisms. Environ Int 31:399–406

    Article  CAS  Google Scholar 

  • Environmental Canada (1990) Guidance document on control of toxicity test precision using reference toxicants. Repont EPS 1/RM/12

  • Espíndola ELG, Rocha O, Barbosa RM, Povinelli J (2000) A toxicidade de efluentes (lodo) de estações de tratamento de água a dafinídeos (Daphnia similis), quironomídeos (Chironomus xanthus) e peixes (Hyphessobrycon egues). In: Espíndola ELG, Paschoal CB, Rocha O, Bohrer MBC, Oliveira-Neto AL (eds) Ecotoxicologia—perspectivas para o século XXI. Rima Editora, São Carlos, Brazil, pp 379–394

    Google Scholar 

  • Fischer SW, Stromberg P, Bruner KA, Boulet LD (1991) Molluscidial activity of potassium to the zebra mussel, Dreissena polymorphia: toxicity and mode of action. Aquat Toxicol 20:219–234

    Article  Google Scholar 

  • Foster S, Thomas M, Korth W (1998) Laboratory-derived acute toxicity of selected pesticides to Ceriodaphnia dubia. Austral J Ecotoxicol 4:53–59

    CAS  Google Scholar 

  • Freitas EC, Rocha O (2006) The life cycle of Pseudosida ramosa, Daday 1904, an endemic Neotropical cladoceran. Acta Limnol Bras 18(34):293–303

    Google Scholar 

  • García GG, Nandini S, Sarma SSS (2004) Effect of cadmium on the population dynamics of Moina macrocopa and Macrothrix triserialis (Cladocera). B Environ Contam Tox 72:717–724

    Article  Google Scholar 

  • Gonçalves AMM, Castro BB, Pardal MA, Gonçalves F (2007) Salinity effects on survival and life history of two freshwater cladocerans (Daphnia magna and Daphnia longispina). Ann Limnol-Int J Lim 43(1):13–20

    Article  Google Scholar 

  • Guan R, Wang WX (2006) Comparison between two clones of Daphnia magna: effects of multigenerational cadmium exposure on toxicity, individual fitness, and biokinetics. Aquat Toxicol 76:217–229

    Article  CAS  Google Scholar 

  • Hamilton MA, Russo RC, Thurfton RB (1977) Trimmed Spearman-Karber method for estimating median lethal concentration in toxicity bioassays. Environ Sci Technol 11(7):714–719

    Article  CAS  Google Scholar 

  • Hartman NK, Martin DB (1985) Effects of four agricultural pesticides on Daphnia pulex, Lemma minor and Potamogeton pectinatus. B Environ Contam Toxicol 5:646–651

    Article  Google Scholar 

  • ISO (International Organization for Standardization) (1982) Water quality-determination of the mortality of Daphnia magna Straus (Cladocera: Crustacea). ISO 6241–1982. ISO, Geneva, Switzerland

    Google Scholar 

  • Korovchinsky NM (2006) The Cladocera (Crustacea: Branchiopoda) as a relict group. Zool J Linn Soc Lond 147:109–124

    Article  Google Scholar 

  • Krantzberg G (1989) Metal accumulation by chironomid larvae: the effects of age and body weight on metal body burdens. Hydrobiologia 188(189):497–506

    Article  Google Scholar 

  • Lewis PA, Horning WB (1991) Differences in acute toxicity test results of three reference toxicants on Daphnia at two temperatures. Environ Toxicol Chem 10:1351–1357

    CAS  Google Scholar 

  • Lilius H, Hastbacka T, Isomaa B (1995) A comparison of the toxicity of 30 reference chemicals to Daphnia magna and Daphnia pulex. Environ Toxicol Chem 14:2085–2088

    CAS  Google Scholar 

  • Macek KJ, Burton KS, Sauter S, Gnilka S, Dean JW (1976) Chronic toxicity of atrazine to selected aquatic invertebrates and fishes. EPA-600/3-76-047. U.S. EPA, Washington, DC

    Google Scholar 

  • Martínez-Jerónimo F, Martínez-Jerónimo L (2007) Chronic effect of NaCl salinity on a freshwater strain of Daphnia magna Straus (Crustacea: Cladocera): a demographic study. Ecotox Environ Safe 67:411–416

    Article  Google Scholar 

  • Martínez-Jerónimo F, Muñoz-Mejía G (2007) Evaluation of the sensitivity of three cladoceran species widely distributed in Mexico to three referent toxicants. J Environ Sci Health A 42:1417–1424

    Article  Google Scholar 

  • Mitchell SE, Halves J, Lampert W (2004) Coexistence of similar genotypes of Daphnia magna in intermittent populations: response to thermal stress. Oikos 106(3):469–478

    Article  Google Scholar 

  • Mohammed A, Agard JBR (2006) Comparative sensitivity of three tropical cladocerans species (Diaphanosoma brachyurum, Ceriodaphnia rigaudii and Moinodaphnia macleayi) to six chemicals. J Environ Sci Health A 41:2713–2720

    CAS  Google Scholar 

  • Moreland DE (1980) Mechanisms of action of herbicides. Annu Rev Plant Physiol 31:597–638

    Article  CAS  Google Scholar 

  • Mount DR, Gulley DD, Hockett JR, Garrison TD, Evans JM (1997) Statistical models to predict the toxicity of major ions to Ceriodaphnia dubia, Dpahnia magna and Pimephales promelas (fathead minnows). Environ Toxicol Chem 16(10):2009–2019

    CAS  Google Scholar 

  • Müller H (1972) Wachstum and phosphatbedarf von Nitzschia actinastroides (Lemn.) v. Goor in statischer und homokontiuierliecher Kultur unter Phosphatlimitierung. Arch Hydrobiol Suppl 38:399–484

    Google Scholar 

  • OECD (Organization for Economic Cooperation, Development) (2001) Potassium chloride. SIDS CAS No. 7447-40-7. OECD, Paris

    Google Scholar 

  • OECD (Organization for Economic Cooperation, Development) (2004) Guideline for testing of chemicals. Daphnia sp., acute immobilisation test. OECD 202. OECD, Paris

    Google Scholar 

  • Okumura DT, Takenaka RA, Rocha O (2005) Avaliação da tolerância da espécie exótica Melanoides turbeculata (Gastropoda, Thiaridae) a fatores ambientais e substâncias tóxicas. In: Rocha O, Espíndola ELG, Fenerich-Verani N, Verani JR, Rietzler AC (eds) Espécies invasoras em águas doces: Estudos de caso e propostas de manejo. Gráfica Expressa, Brasília, pp 339–356

    Google Scholar 

  • Okumura DT, Sotero-Santos RB, Takenaka RA, Rocha O (2007) Evaluation of cyanobacteria toxicity in tropical reservoirs using crude extracts bioassay with cladocerans. Ecotoxicology 16:263–270

    Article  CAS  Google Scholar 

  • Oliveira-Filho EC, Da-Matta AC, Cabral LL, Veiga LF, Paumgartten FJR (2008) Comparison between four and seven-day Ceriodaphnia dubia survival and reproduction test protocols using oil refinery effluent samples. Braz Arch Biol Technol 51(1):137–142

    Article  CAS  Google Scholar 

  • Oliveira-Neto AL (2000) Toxicidade de alguns metais pesados (Cd, Cr, Pb) em organismos planctônicos lacustres de região subtropical. Ph.D. thesis. Universidade de São Paulo, São Carlos, Brazil

  • Pennak RW (1953) Freshwater invertebrates of the United States. Ronald Press, New York

    Google Scholar 

  • Phyu YL, MStJ Warne, Lim RP (2004) Toxicity of atrazine and molinate to the cladoceran Daphnia carinata and the effect of river water and bottom sediment on their bioavailability. Arch Environ Contam Toxicol 46:308–315

    Article  CAS  Google Scholar 

  • Prato E, Biandolino F, Scardicchio C (2006) Test for acute toxicity of copper, cadmium, and mercury in five marine species. Turk J Zool 30:285–290

    CAS  Google Scholar 

  • Quinn B, Gagne F, Blaise C (2007) Validation of a multi-well plate toxicity test to assess feeding behaviour of the cnidarian Hydra attenuata. Fresen Environ Bull 16(9):1100–1107

    CAS  Google Scholar 

  • Ramachandran S, Patel TR, Colbo MH (1997) Effect of copper and cadmium on three malaysian tropical estuarine invertebrate larvae. Ecotoxicol Environ Safe 36:183–188

    Article  CAS  Google Scholar 

  • Rand GM (1995) Introduction to aquatic toxicology—effects, environmental fate, and risk assessment, 2nd edn. Taylor & Francis, Washington, DC

    Google Scholar 

  • Rodgher S, Espíndola ELG (2008) Effects of interactions between algal densities and cadmium concentrations on Ceriodaphnia dubia fecundity and survival. Ecotoxicol Environ Safe 71:765–773

    Article  CAS  Google Scholar 

  • Romanelli MF, Moraes MCF, Villavicencio ALCH, Borrely SI (2004) Evaluation of toxicity reduction of sodium dodecyl sulfate submitted to electron beam radiation. Radiat Phys chem 71:409–411

    Article  Google Scholar 

  • Rossini GDB, Ronco AE (1996) Acute toxicity biossay using Daphnia obtusa as a test organism. Environ Toxic Water 11:255–258

    Article  Google Scholar 

  • Schuytema GS, Nebeker AV, Stutzman TW (1997) Salinity tolerance of Daphnia magna and potential use for estuarine sediment toxicity tests. Arch Environ Contam Toxicol 33:194–198

    Article  CAS  Google Scholar 

  • Seco-Gordillo JI, Fernández-Pereira C, Vale-Parapar JF (1998) Evaluación de la ecotoxicidad aguda de metales pesados con Daphnia magna Straus. Ecotoxicol Environ Restor 1(1):3–12

    Google Scholar 

  • Shedd TR, Widder MW, Toussaint MW, Sunkel MC, Hull E (1999) Evaluation of the annual killifish Nothobranchius guentheri as a tool for rapid acute toxicity screening. Environ Toxicol Chem 18(10):2258–2261

    CAS  Google Scholar 

  • Sotero-Barbosa RB, Rocha O, Povinelli J (2007) Toxicity of ferric chloride sludge to aquatic organisms. Chemosphere 68:628–636

    Google Scholar 

  • Stewart AJ, Konetsky BK (1998) Longevity and reproduction of Ceriodaphnia dubia in receiving waters. Environ Toxicol Chem 17:1165–1171

    CAS  Google Scholar 

  • Stuhlbacher A, Maltby L (1992) Cadmium resistance in Gammarus pulex (L.). Arch Environ Contam Toxicol 22:319–324

    Article  CAS  Google Scholar 

  • Takenaka RA, Sotero-Santos RMB, Rocha O (2006) Water quality assessment by ecotoxicological and limnological methods in water supplies, Southeast Brazil. Ecotoxicology 15:73–82

    Article  Google Scholar 

  • Takenaka RA, Dellamano-Oliveira MJ, Rocha O (2007) Toxicidade de extratos de florações de cianobactérias de reservatórios do rio Tietê, SP, aos dafinídeos Ceriodaphnia dubia e Ceriodaphnia silvestrii (Cladocera, Crustacea). J Braz Soc Ecotox 2:147–156

    Article  Google Scholar 

  • Trayler KM, Davis JA (1996) Sensitivity of Daphnia carinata sensu lato to the insect growth regulator, pyriproxyfen. Ecotoxicol Environ Safe 33(2):154–156

    Article  CAS  Google Scholar 

  • U.S. EPA (U.S. Environmental Protection Agency) (1984) Ambient aquatic life water quality criteria for chromium. U.S. EPA, Washington, DC

    Google Scholar 

  • U.S. EPA (U.S. Environmental Protection Agency) (1985) Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. U.S. EPA, Washington, DC

    Google Scholar 

  • U.S. EPA (U.S. Environmental Protection Agency) (1993) Methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms, 3rd edn. U.S. EPA, Washington, DC

    Google Scholar 

  • U.S. EPA (U.S. Environmental Protection Agency) (2002) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. U.S. EPA, Washington, DC

    Google Scholar 

  • Waller DL, Rasch JJ, Cope WG, Marking LL (1993) Toxicity of candidate molluscicides to zebra mussels (Dreissena polymorpha) and selected nontarget organisms. J Great Lakes Res 19(4):695–702

    Article  CAS  Google Scholar 

  • Williamson P (1980) Variables affecting body burdens of lead, zinc and cadmium in a roadside population of the snail Cepaea hortensis. Oecologia 44:213–220

    Article  Google Scholar 

  • Winner RW, Farrell M (1976) Acute and chronic toxicity of copper to four species of Daphnia. J Fish Res Board Can 33:1685–1691

    CAS  Google Scholar 

  • Zagatto PA (1988) Sensibilidade de Daphnia similis: controle de qualidade de culturas. Ambiente 2(2):79–83

    Google Scholar 

Download references

Acknowledgment

We are grateful to the São Paulo State Research Aid Foundation (FAPESP) for the financial support provided for this research project (No. 06/59397-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuela Cristina Freitas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freitas, E.C., Rocha, O. Acute Toxicity Tests with the Tropical Cladoceran Pseudosida ramosa: The Importance of Using Native Species as Test Organisms. Arch Environ Contam Toxicol 60, 241–249 (2011). https://doi.org/10.1007/s00244-010-9541-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-010-9541-2

Keywords

Navigation