Skip to main content

Advertisement

Log in

Deficient butyrate metabolism in the intestinal microbiome is a potential risk factor for recurrent kidney stone disease

  • RESEARCH
  • Published:
Urolithiasis Aims and scope Submit manuscript

Abstract

Intestinal microbiome dysbiosis is a known risk factor for recurrent kidney stone disease (KSD) with prior data suggesting a role for dysfunctional metabolic pathways other than those directly utilizing oxalate. To identify alternative mechanisms, the current study analyzed differences in the metabolic potential of intestinal microbiomes of patients (n = 17) and live-in controls (n = 17) and determined their relevance to increased risk for KSD using shotgun metagenomic sequencing. We found no differences in the abundance of genes associated with known oxalate degradation pathways, supporting the notion that dysfunction in other metabolic pathways plays a role in KSD. Further analysis showed decreased abundance of key enzymes involved in butyrate biosynthesis in patient intestinal microbiomes. Furthermore, de novo construction of microbial genomes showed that the majority of genes significantly enriched in non-stone formers are affiliated with Faecalibacterium prausnitzii, a major butyrate producer. Specifically pertaining to butyrate metabolism, the majority of abundant genes mapped back to F. prausnitzii, Alistipes spp., and Akkermansia muciniphila. No differences were observed in ascorbate or glyoxylate metabolic pathways. Collectively, these data suggest that impaired bacterial-associated butyrate metabolism may be an oxalate-independent mechanism that contributes to an increased risk for recurrent KSD. This indicates that the role of the intestinal microbiome in recurrent KSD is multi-factorial, which is representative of the highly intertwined metabolic nature of this complex environment. Future bacteria-based treatments must not be restricted to targeting only oxalate metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Raw shotgun metagenomic data were deposited to the sequence read archive under accession # SRR15021121- SRR15021153.

References

  1. Allison MJ, Dawson KA, Mayberry WR, Foss JG (1985) Oxalobacter formigenes gen. nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch Microbiol 141(1):1–7. https://doi.org/10.1007/BF00446731

    Article  CAS  PubMed  Google Scholar 

  2. Hatch M, Cornelius J, Allison M, Sidhu H, Peck A, Freel RW (2006) Oxalobacter sp. reduces urinary oxalate excretion by promoting enteric oxalate secretion. Kidney Int 69(4):691–698. https://doi.org/10.1038/sj.ki.5000162

    Article  CAS  PubMed  Google Scholar 

  3. Hatch M, Gjymishka A, Salido EC, Allison MJ, Freel RW (2011) Enteric oxalate elimination is induced and oxalate is normalized in a mouse model of primary hyperoxaluria following intestinal colonization with Oxalobacter. Am J Physiol Gastrointest Liver Physiol 300(3):G461–G469. https://doi.org/10.1152/ajpgi.00434.2010

    Article  CAS  PubMed  Google Scholar 

  4. Hatch M, Freel RW (2013) A human strain of Oxalobacter (HC-1) promotes enteric oxalate secretion in the small intestine of mice and reduces urinary oxalate excretion. Urolithiasis 41(5):379–384. https://doi.org/10.1007/s00240-013-0601-8

    Article  CAS  PubMed  Google Scholar 

  5. Arvans D, Jung YC, Antonopoulos D, Koval J, Granja I, Bashir M et al (2017) Oxalobacter formigenes-derived bioactive factors stimulate oxalate transport by intestinal epithelial cells. J Am Soc Nephrol 28(3):876–887. https://doi.org/10.1681/ASN.2016020132

    Article  CAS  PubMed  Google Scholar 

  6. Kaufman DW, Kelly JP, Curhan GC, Anderson TE, Dretler SP, Preminger GM et al (2008) Oxalobacter formigenes may reduce the risk of calcium oxalate kidney stones. J Am Soc Nephrol 19(6):1197–1203. https://doi.org/10.1681/ASN.2007101058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Troxel SA, Sidhu H, Kaul P, Low RK (2003) Intestinal Oxalobacter formigenes colonization in calcium oxalate stone formers and its relation to urinary oxalate. J Endourol 17(3):173–176. https://doi.org/10.1089/089277903321618743

    Article  PubMed  Google Scholar 

  8. Tavasoli S, Alebouyeh M, Naji M, Shakiba Majd G, Shabani Nashtaei M, Broumandnia N et al (2020) Association of intestinal oxalate-degrading bacteria with recurrent calcium kidney stone formation and hyperoxaluria: a case-control study. BJU Int 125(1):133–143. https://doi.org/10.1111/bju.14840

    Article  CAS  PubMed  Google Scholar 

  9. Siener R, Bangen U, Sidhu H, Honow R, von Unruh G, Hesse A (2013) The role of Oxalobacter formigenes colonization in calcium oxalate stone disease. Kidney Int 83(6):1144–1149. https://doi.org/10.1038/ki.2013.104

    Article  CAS  PubMed  Google Scholar 

  10. Sidhu H, Schmidt ME, Cornelius JG, Thamilselvan S, Khan SR, Hesse A et al (1999) Direct correlation between hyperoxaluria/oxalate stone disease and the absence of the gastrointestinal tract-dwelling bacterium Oxalobacter formigenes: possible prevention by gut recolonization or enzyme replacement therapy. J Am Soc Nephrol 10(Suppl 14):S334–S340

    CAS  PubMed  Google Scholar 

  11. Kumar R, Ghoshal UC, Singh G, Mittal RD (2004) Infrequency of colonization with Oxalobacter formigenes in inflammatory bowel disease: possible role in renal stone formation. J Gastroenterol Hepatol 19(12):1403–1409. https://doi.org/10.1111/j.1440-1746.2004.03510.x

    Article  PubMed  Google Scholar 

  12. Sikora P, Niedzwiadek J, Mazur E, Paluch-Oles J, Zajaczkowska M, Koziol-Montewka M (2009) Intestinal colonization with Oxalobacter formigenes and its relation to urinary oxalate excretion in pediatric patients with idiopathic calcium urolithiasis. Arch Med Res 40(5):369–373. https://doi.org/10.1016/j.arcmed.2009.05.004

    Article  CAS  PubMed  Google Scholar 

  13. Liu M, Zhang Y, Wu J, Gao M, Zhu Z, Chen H (2023) Causal relationship between kidney stones and gut microbiota contributes to the gut-kidney axis: a two-sample Mendelian randomization study. Front Microbiol 14:1204311. https://doi.org/10.3389/fmicb.2023.1204311

    Article  PubMed  PubMed Central  Google Scholar 

  14. Miller AW, Choy D, Penniston KL, Lange D (2019) Inhibition of urinary stone disease by a multi-species bacterial network ensures healthy oxalate homeostasis. Kidney Int 96(1):180–188. https://doi.org/10.1016/j.kint.2019.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Denburg MR, Koepsell K, Lee JJ, Gerber J, Bittinger K, Tasian GE (2020) Perturbations of the gut microbiome and metabolome in children with calcium oxalate kidney stone disease. J Am Soc Nephrol 31(6):1358–1369. https://doi.org/10.1681/ASN.2019101131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zampini A, Nguyen AH, Rose E, Monga M, Miller AW (2019) Defining dysbiosis in patients with urolithiasis. Sci Rep 9(1):5425. https://doi.org/10.1038/s41598-019-41977-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Miller AW, Dearing D (2013) The metabolic and ecological interactions of oxalate-degrading bacteria in the Mammalian gut. Pathogens 2(4):636–652. https://doi.org/10.3390/pathogens2040636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12(1):59–60

    Article  CAS  PubMed  Google Scholar 

  20. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):1

    Article  Google Scholar 

  21. Li D, Luo R, Liu CM, Leung CM, Ting HF, Sadakane K et al (2016) MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 102:3–11. https://doi.org/10.1016/j.ymeth.2016.02.020

    Article  CAS  PubMed  Google Scholar 

  22. Konwar KM, Hanson NW, Bhatia MP, Kim D, Wu SJ, Hahn AS et al (2015) MetaPathways v2.5: quantitative functional, taxonomic and usability improvements. Bioinformatics 31(20):3345–3347. https://doi.org/10.1093/bioinformatics/btv361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30. https://doi.org/10.1093/nar/28.1.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628. https://doi.org/10.1038/nmeth.1226

    Article  CAS  PubMed  Google Scholar 

  25. Li B, Ruotti V, Stewart RM, Thomson JA, Dewey CN (2010) RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformatics 26(4):493–500. https://doi.org/10.1093/bioinformatics/btp692

    Article  CAS  PubMed  Google Scholar 

  26. Miller IJ, Rees ER, Ross J, Miller I, Baxa J, Lopera J et al (2019) Autometa: automated extraction of microbial genomes from individual shotgun metagenomes. Nucleic Acids Res 47(10):e57. https://doi.org/10.1093/nar/gkz148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Aganezov SS, Alekseyev MA (2017) CAMSA: a tool for comparative analysis and merging of scaffold assemblies. BMC Bioinform 18(15):41–50

    Google Scholar 

  28. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19(6):1117–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wilcoxon F (1946) Individual comparisons of grouped data by ranking methods. J Econ Entomol 39:269. https://doi.org/10.1093/jee/39.2.269

    Article  CAS  PubMed  Google Scholar 

  30. R Core Team (2017) R: a language and environment for statistical computing. https://www.R-project.org/

  31. Hothorn T, Hornik K, van de Wiel M, Zeileis A (2008) Implementing a class of permutation tests: the coin package. J Stat Softw. 28:1–23

    Article  Google Scholar 

  32. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. (2022) Vegan: community ecology package. https://cran.r-project.org/web/packages/vegan/index.html

  33. Anand S, Kaur H, Mande SS (2016) Comparative in silico analysis of butyrate production pathways in gut commensals and pathogens. Front Microbiol 7:1945. https://doi.org/10.3389/fmicb.2016.01945

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK et al (2017) Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol 35(8):725–731. https://doi.org/10.1038/nbt.3893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Miller AW, Dale C, Dearing MD (2017) Microbiota diversification and crash induced by dietary oxalate in the mammalian herbivore Neotoma albigula. mSphere. https://doi.org/10.1128/mSphere.00428-17

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ferraro PM, Curhan GC, Gambaro G, Taylor EN (2019) Antibiotic use and risk of incident kidney stones in female nurses. Am J Kidney Dis 74(6):736–741. https://doi.org/10.1053/j.ajkd.2019.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tasian GE, Jemielita T, Goldfarb DS, Copelovitch L, Gerber JS, Wu Q et al (2018) Oral antibiotic exposure and kidney stone disease. J Am Soc Nephrol 29(6):1731–1740. https://doi.org/10.1681/ASN.2017111213

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wilkins LJ, Monga M, Miller AW (2019) Defining dysbiosis for a cluster of chronic diseases. Sci Rep 9(1):12918. https://doi.org/10.1038/s41598-019-49452-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shimizu S, Inoue K, Tani Y, Yamada H (1981) Butyryl-CoA synthetase of Pseudomonas aeruginosa–purification and characterization. Biochem Biophys Res Commun 103(4):1231–1237. https://doi.org/10.1016/0006-291x(81)90254-0

    Article  CAS  PubMed  Google Scholar 

  40. Tersteegen A, Linder D, Thauer RK, Hedderich R (1997) Structures and functions of four anabolic 2-oxoacid oxidoreductases in Methanobacterium thermoautotrophicum. Eur J Biochem 244(3):862–868. https://doi.org/10.1111/j.1432-1033.1997.00862.x

    Article  CAS  PubMed  Google Scholar 

  41. Kletzin A, Adams MW (1996) Molecular and phylogenetic characterization of pyruvate and 2-ketoisovalerate ferredoxin oxidoreductases from Pyrococcus furiosus and pyruvate ferredoxin oxidoreductase from Thermotoga maritima. J Bacteriol 178(1):248–257. https://doi.org/10.1128/jb.178.1.248-257.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chabriere E, Charon MH, Volbeda A, Pieulle L, Hatchikian EC, Fontecilla-Camps JC (1999) Crystal structures of the key anaerobic enzyme pyruvate:ferredoxin oxidoreductase, free and in complex with pyruvate. Nat Struct Biol 6(2):182–190. https://doi.org/10.1038/5870

    Article  CAS  PubMed  Google Scholar 

  43. Furdui C, Ragsdale SW (2000) The role of pyruvate ferredoxin oxidoreductase in pyruvate synthesis during autotrophic growth by the Wood-Ljungdahl pathway. J Biol Chem 275(37):28494–28499. https://doi.org/10.1074/jbc.M003291200

    Article  CAS  PubMed  Google Scholar 

  44. Gibson MI, Brignole EJ, Pierce E, Can M, Ragsdale SW, Drennan CL (2015) The structure of an oxalate oxidoreductase provides insight into microbial 2-oxoacid metabolism. Biochemistry 54(26):4112–4120. https://doi.org/10.1021/acs.biochem.5b00521

    Article  CAS  PubMed  Google Scholar 

  45. Stern JM, Moazami S, Qiu Y, Kurland I, Chen Z, Agalliu I et al (2016) Evidence for a distinct gut microbiome in kidney stone formers compared to non-stone formers. Urolithiasis 44(5):399–407. https://doi.org/10.1007/s00240-016-0882-9

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chen F, Bao X, Liu S, Ye K, Xiang S, Yu L et al (2021) Gut microbiota affect the formation of calcium oxalate renal calculi caused by high daily tea consumption. Appl Microbiol Biotechnol 105(2):789–802. https://doi.org/10.1007/s00253-020-11086-w

    Article  CAS  PubMed  Google Scholar 

  47. Cui Q, Xia Y, Wu Q, Chang Q, Niu K, Zhao Y (2021) A meta-analysis of the reproducibility of food frequency questionnaires in nutritional epidemiological studies. Int J Behav Nutr Phys Act 18(1):12. https://doi.org/10.1186/s12966-020-01078-4

    Article  PubMed  PubMed Central  Google Scholar 

  48. Archer E, Marlow ML, Lavie CJ (2018) Controversy and debate: memory-based methods paper 1: the fatal flaws of food frequency questionnaires and other memory-based dietary assessment methods. J Clin Epidemiol 104:113–124. https://doi.org/10.1016/j.jclinepi.2018.08.003

    Article  PubMed  Google Scholar 

  49. Barcenilla A, Pryde SE, Martin JC, Duncan SH, Stewart CS, Henderson C et al (2000) Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol 66(4):1654–1661. https://doi.org/10.1128/aem.66.4.1654-1661.2000

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Duncan SH, Hold GL, Harmsen HJM, Stewart CS, Flint HJ (2002) Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int J Syst Evol Microbiol 52(6):2141–2146. https://doi.org/10.1099/00207713-52-6-2141

    Article  CAS  PubMed  Google Scholar 

  51. Lopez-Siles M, Duncan SH, Garcia-Gil LJ, Martinez-Medina M (2017) Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. ISME J 11(4):841–852. https://doi.org/10.1038/ismej.2016.176

    Article  PubMed  PubMed Central  Google Scholar 

  52. Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ (2002) The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217(2):133–139. https://doi.org/10.1111/j.1574-6968.2002.tb11467.x

    Article  CAS  PubMed  Google Scholar 

  53. Lopetuso LR, Scaldaferri F, Petito V, Gasbarrini A (2013) Commensal Clostridia: leading players in the maintenance of gut homeostasis. Gut Pathog 5(1):23. https://doi.org/10.1186/1757-4749-5-23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Belzer C, Chia LW, Aalvink S, Chamlagain B, Piironen V, Knol J et al (2017) Microbial metabolic networks at the mucus layer lead to Diet-independent butyrate and vitamin B12 production by intestinal symbionts. MBio. https://doi.org/10.1128/mBio.00770-17

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ticinesi A, Milani C, Guerra A, Allegri F, Lauretani F, Nouvenne A et al (2018) Understanding the gut-kidney axis in nephrolithiasis: an analysis of the gut microbiota composition and functionality of stone formers. Gut 67(12):2097–2106. https://doi.org/10.1136/gutjnl-2017-315734

    Article  CAS  PubMed  Google Scholar 

  56. Al KF, Joris BR, Daisley BA, Chmiel JA, Bjazevic J, Reid G et al (2023) Multi-site microbiota alteration is a hallmark of kidney stone formation. Microbiome 11(1):263. https://doi.org/10.1186/s40168-023-01703-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Moens F, De Vuyst L (2017) Inulin-type fructan degradation capacity of Clostridium cluster IV and XIVa butyrate-producing colon bacteria and their associated metabolic outcomes. Benef Microbes 8(3):473–490. https://doi.org/10.3920/BM2016.0142

    Article  CAS  PubMed  Google Scholar 

  58. Lee B, Moon KM, Kim CY (2018) Tight junction in the intestinal epithelium: its association with diseases and regulation by phytochemicals. J Immunol Res 2018:2645465. https://doi.org/10.1155/2018/2645465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Knauf F, Ko N, Jiang Z, Robertson WG, Van Itallie CM, Anderson JM et al (2011) Net intestinal transport of oxalate reflects passive absorption and SLC26A6-mediated secretion. J Am Soc Nephrol 22(12):2247–2255. https://doi.org/10.1681/ASN.2011040433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Whittamore JM, Hatch M (2017) The role of intestinal oxalate transport in hyperoxaluria and the formation of kidney stones in animals and man. Urolithiasis 45(1):89–108. https://doi.org/10.1007/s00240-016-0952-z

    Article  CAS  PubMed  Google Scholar 

  61. Farre R, Fiorani M, Abdu Rahiman S, Matteoli G (2020) Intestinal permeability, inflammation and the role of nutrients. Nutrients. https://doi.org/10.3390/nu12041185

    Article  PubMed  PubMed Central  Google Scholar 

  62. Krishnan S, Rajendran VM, Binder HJ (2003) Apical NHE isoforms differentially regulate butyrate-stimulated Na absorption in rat distal colon. Am J Physiol Cell Physiol 285(5):C1246–C1254. https://doi.org/10.1152/ajpcell.00598.2002

    Article  CAS  PubMed  Google Scholar 

  63. Musch MW, Bookstein C, Xie Y, Sellin JH, Chang EB (2001) SCFA increase intestinal Na absorption by induction of NHE3 in rat colon and human intestinal C2/bbe cells. Am J Physiol Gastrointest Liver Physiol 280(4):G687–G693. https://doi.org/10.1152/ajpgi.2001.280.4.G687

    Article  CAS  PubMed  Google Scholar 

  64. Kiela PR, Hines ER, Collins JF, Ghishan FK (2001) Regulation of the rat NHE3 gene promoter by sodium butyrate. Am J Physiol Gastrointest Liver Physiol 281(4):G947–G956. https://doi.org/10.1152/ajpgi.2001.281.4.G947

    Article  CAS  PubMed  Google Scholar 

  65. Alrefai WA, Wen X, Jiang W, Katz JP, Steinbrecher KA, Cohen MB et al (2007) Molecular cloning and promoter analysis of downregulated in adenoma (DRA). Am J Physiol Gastrointest Liver Physiol 293(5):G923–G934. https://doi.org/10.1152/ajpgi.00029.2007

    Article  CAS  PubMed  Google Scholar 

  66. Canani RB, Terrin G, Elce A, Pezzella V, Heinz-Erian P, Pedrolli A et al (2013) Genotype-dependency of butyrate efficacy in children with congenital chloride diarrhea. Orphanet J Rare Dis 8:194. https://doi.org/10.1186/1750-1172-8-194

    Article  PubMed  PubMed Central  Google Scholar 

  67. Freel RW, Whittamore JM, Hatch M (2013) Transcellular oxalate and Cl- absorption in mouse intestine is mediated by the DRA anion exchanger Slc26a3, and DRA deletion decreases urinary oxalate. Am J Physiol Gastrointest Liver Physiol 305(7):G520–G527. https://doi.org/10.1152/ajpgi.00167.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Freel RW, Hatch M, Green M, Soleimani M (2006) Ileal oxalate absorption and urinary oxalate excretion are enhanced in Slc26a6 null mice. Am J Physiol Gastrointest Liver Physiol 290(4):G719–G728. https://doi.org/10.1152/ajpgi.00481.2005

    Article  CAS  PubMed  Google Scholar 

  69. Jiang Z, Asplin JR, Evan AP, Rajendran VM, Velazquez H, Nottoli TP et al (2006) Calcium oxalate urolithiasis in mice lacking anion transporter Slc26a6. Nat Genet 38(4):474–478. https://doi.org/10.1038/ng1762

    Article  CAS  PubMed  Google Scholar 

  70. Andrade-Oliveira V, Amano MT, Correa-Costa M, Castoldi A, Felizardo RJ, de Almeida DC et al (2015) Gut Bacteria products prevent AKI induced by ischemia-reperfusion. J Am Soc Nephrol 26(8):1877–1888. https://doi.org/10.1681/ASN.2014030288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Machado RA, Constantino Lde S, Tomasi CD, Rojas HA, Vuolo FS, Vitto MF et al (2012) Sodium butyrate decreases the activation of NF-kappaB reducing inflammation and oxidative damage in the kidney of rats subjected to contrast-induced nephropathy. Nephrol Dial Transplant 27(8):3136–3140. https://doi.org/10.1093/ndt/gfr807

    Article  CAS  PubMed  Google Scholar 

  72. Al-Harbi NO, Nadeem A, Ahmad SF, Alotaibi MR, AlAsmari AF, Alanazi WA et al (2018) Short chain fatty acid, acetate ameliorates sepsis-induced acute kidney injury by inhibition of NADPH oxidase signaling in T cells. Int Immunopharmacol 58:24–31. https://doi.org/10.1016/j.intimp.2018.02.023

    Article  CAS  PubMed  Google Scholar 

  73. Marzocco S, Fazeli G, Di Micco L, Autore G, Adesso S, Dal Piaz F et al (2018) Supplementation of short-chain fatty acid, sodium propionate, in patients on maintenance hemodialysis: beneficial effects on inflammatory parameters and gut-derived uremic toxins, a pilot Study (PLAN Study). J Clin Med. https://doi.org/10.3390/jcm7100315

    Article  PubMed  PubMed Central  Google Scholar 

  74. Yang J, Li Q, Henning SM, Zhong J, Hsu M, Lee R et al (2018) Effects of prebiotic fiber xylooligosaccharide in adenine-induced nephropathy in mice. Mol Nutr Food Res. https://doi.org/10.1002/mnfr.201800014

    Article  PubMed  PubMed Central  Google Scholar 

  75. Vaziri ND, Liu SM, Lau WL, Khazaeli M, Nazertehrani S, Farzaneh SH et al (2014) High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease. PLoS ONE 9(12):e114881. https://doi.org/10.1371/journal.pone.0114881

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wong J, Piceno YM, DeSantis TZ, Pahl M, Andersen GL, Vaziri ND (2014) Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am J Nephrol 39(3):230–237. https://doi.org/10.1159/000360010

    Article  CAS  PubMed  Google Scholar 

  77. Huang W, Zhou L, Guo H, Xu Y, Xu Y (2017) The role of short-chain fatty acids in kidney injury induced by gut-derived inflammatory response. Metabolism 68:20–30. https://doi.org/10.1016/j.metabol.2016.11.006

    Article  CAS  PubMed  Google Scholar 

  78. Khan SR (2013) Reactive oxygen species as the molecular modulators of calcium oxalate kidney stone formation: evidence from clinical and experimental investigations. J Urol 189(3):803–811. https://doi.org/10.1016/j.juro.2012.05.078

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  79. Khan SR, Canales BK, Dominguez-Gutierrez PR (2021) Randall’s plaque and calcium oxalate stone formation: role for immunity and inflammation. Nat Rev Nephrol 17(6):417–433. https://doi.org/10.1038/s41581-020-00392-1

    Article  CAS  PubMed  Google Scholar 

  80. Liu Y, Jin X, Hong HG, Xiang L, Jiang Q, Ma Y et al (2020) The relationship between gut microbiota and short chain fatty acids in the renal calcium oxalate stones disease. FASEB J 34(8):11200–11214. https://doi.org/10.1096/fj.202000786R

    Article  CAS  PubMed  Google Scholar 

  81. Liu Y, Jin X, Ma Y, Jian Z, Wei Z, Xiang L et al (2021) Short-chain fatty acids reduced renal calcium oxalate stones by regulating the expression of intestinal oxalate transporter SLC26A6. mSystems 6(6):e0104521. https://doi.org/10.1128/mSystems.01045-21

    Article  PubMed  Google Scholar 

  82. Hosomi A, Nakanishi T, Fujita T, Tamai I (2012) Extra-renal elimination of uric acid via intestinal efflux transporter BCRP/ABCG2. PLoS ONE 7(2):e30456. https://doi.org/10.1371/journal.pone.0030456

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Goncalves P, Gregorio I, Martel F (2011) The short-chain fatty acid butyrate is a substrate of breast cancer resistance protein. Am J Physiol Cell Physiol 301(5):C984–C994. https://doi.org/10.1152/ajpcell.00146.2011

    Article  CAS  PubMed  Google Scholar 

  84. Guo Z, Zhang J, Wang Z, Ang KY, Huang S, Hou Q et al (2016) Intestinal microbiota distinguish gout patients from healthy humans. Sci Rep 6:20602. https://doi.org/10.1038/srep20602

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  85. Robijn S, Hoppe B, Vervaet BA, D’Haese PC, Verhulst A (2011) Hyperoxaluria: a gut-kidney axis? Kidney Int 80(11):1146–1158. https://doi.org/10.1038/ki.2011.287

    Article  CAS  PubMed  Google Scholar 

  86. Pearle MS (2003) Effect of vitamin C supplements on urinary oxalate and pH in calcium stone-forming patients. Int Braz J Urol 29(2):167–168

    MathSciNet  PubMed  Google Scholar 

Download references

Funding

Canadian Urologic Association—Astellas Research Grant Awarded to Dirk Lange. The funding body had no role in the design of the study and collection, analysis and interpretation of data or the writing of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conception/design of the work: BC, DL. Acquisition, analysis, interpretation of data: BC, DL, WHC, AA, CML, EKG, SH, ARM, AM, KP. Software used in the work: WHC, SH, CML, AKG, ARM, AM, AA. Drafting/revision of manuscript: all authors.

Corresponding author

Correspondence to Dirk Lange.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests associated with this work.

Ethical approval and consent to participate

The study was approved by the University of British Columbia Clinical Research Ethics Board with informed consent obtained from all participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choy, W.H., Adler, A., Morgan-Lang, C. et al. Deficient butyrate metabolism in the intestinal microbiome is a potential risk factor for recurrent kidney stone disease. Urolithiasis 52, 38 (2024). https://doi.org/10.1007/s00240-024-01534-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00240-024-01534-x

Keywords

Navigation