Skip to main content

Advertisement

Log in

Brushite stone disease as a consequence of lithotripsy?

  • Symposium paper
  • Published:
Urological Research Aims and scope Submit manuscript

Abstract

The incidence of calcium phosphate (CaP) stone disease has increased over the last three decades; specifically, brushite stones have been diagnosed and treated more frequently than in previous years. Brushite is a unique form of CaP, which in certain patients can form into large symptomatic stones. Treatment of brushite stones can be difficult since the stones are resistant to shock wave and ultrasonic lithotripsy, and often require ballistic fragmentation. Patients suffering from brushite stone disease are less likely to be rendered stone free after surgical intervention and often experience stone recurrence despite maximal medical intervention. Studies have demonstrated an association between brushite stone disease and shock wave lithotripsy (SWL) treatment. Some have theorized that many brushite stone formers started as routine calcium oxalate (CaOx) stone formers who sustained an injury to the nephron (such as SWL). The injury to the nephron leads to failure of urine acidification and eventual brushite stone formation. We explore the association between brushite stone disease and iatrogenic transformation of CaOx stone disease to brushite by reviewing the current literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CaP:

Calcium phosphate

SWL:

Shock wave lithotripsy

RP:

Randall’s plaque

CaOx:

Calcium oxalate

PCNL:

Percutaneous nephrolithotomy

References

  1. Stamatelou KK, Francis ME, Jones CA, Nyberg LM, Curhan GC (2003) Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int 63:1817–1823

    Article  PubMed  Google Scholar 

  2. Pearle MS, Calhoun EA, Curhan GC (2005) Urologic diseases in America project: urolithiasis. J Urol 173:848–857

    Article  PubMed  Google Scholar 

  3. Scales CD Jr, Curtis LH et al (2007) Changing gender prevalence of stone disease. J Urol 177:979–982

    Article  PubMed  Google Scholar 

  4. VanDervoort K, Wjesen J, Frank R, Vento S, Crosby V, Chandra M, Trachtman H (2007) Urolithiasis in pediatric patients: a single center study of incidence, clinical presentation and outcome. J Urol 177:2300–2305

    Article  PubMed  Google Scholar 

  5. Parks JH, Worcester EM, Coe FL, Evan AP, Lingeman JE (2004) Clinical implications of abundant calcium phosphate in routinely analyzed kidney stones. Kidney Int 66:777–785

    Article  CAS  PubMed  Google Scholar 

  6. Mandel N, Mandel I, Fryjoff K, Rejniak T, Mandel G (2003) Conversion of calcium oxalate to calcium phosphate with recurrent stone episodes. J Urol 169:2026–2029

    Article  PubMed  Google Scholar 

  7. Parks JH, Coe FL, Evan AP, Worcester EM (2009) Urine pH in renal calcium stone formers who do and do not increase stone phosphate content with time. Nephrol Dial Transplant 24:130–136

    Article  CAS  PubMed  Google Scholar 

  8. Matlaga BR, Kim SC, Watkins SL, Kuo RL, Munch LC, Lingeman JE (2006) Changing composition of renal calculi in patients with neurogenic bladder. J Urol 175:1716–1719

    Article  PubMed  Google Scholar 

  9. Pak CY, Poindexter JR, Adams-Huet B, Pearle MS (2003) Predictive value of kidney stone composition in the detection of metabolic abnormalities. Am J Med 115:26–32

    Article  CAS  PubMed  Google Scholar 

  10. Kuo RL, Moran ME, Kim DH, Abrahams HM, White MD, Lingeman JE (2002) Topiramate-induced nephrolithiasis. J Endourol 16:229–231

    Article  PubMed  Google Scholar 

  11. Matlaga BR, Coe FL, Evan AP, Lingeman JE (2007) The role of Randall’s plaques in the pathogenesis of calcium stones. J Urol 177:31–38

    Article  PubMed  Google Scholar 

  12. Neman WF, Toribara TY, Mulryan BJ (1962) Synthetic hydroxyapatite crystals. 1. Sodium and potassium fixation. Arch Biochem Biophys 98:384–390

    Article  CAS  PubMed  Google Scholar 

  13. Pak CY, Eanes ED, Ruskin B (1971) Spontaneous precipitation of brushite in urine: evidence that brushite is the nidus of renal stones originating as calcium phosphate. Proc Nat Acad Sci 68:1456–1460

    Article  CAS  PubMed  Google Scholar 

  14. Krambeck AE, Handa SE, Coe FL, Worchester EM, Evan AP, Lingeman JE (2010) Profile of the brushite stone former. J Urol (Under review)

  15. Gault MH, Parfrey PS, Robertson WG (1988) Idiopathic calcium phosphate nephrolithiasis. Nephron 48:265–273

    Article  CAS  PubMed  Google Scholar 

  16. Evan AP, Lingeman JE, Coe FL, Shao Y, Parks JH, Bledsoe SB et al (2005) Crystal-associated nephropathy in patients with brushite nephrolithiasis. Kidney Int 67:576–591

    Article  CAS  PubMed  Google Scholar 

  17. Klee LW, Brito CG, Lingeman JE (1991) The clinical implications of brushite calculi. J Urol 145:715–718

    CAS  PubMed  Google Scholar 

  18. Heimbach D, Jacobs D, Hesse A, Muller SC, Zhong P, Preminger GM (1999) How to improve lithotripsy and chemolitholysis of brushite-stones: an in vitro study. Urol Res 27:266–271

    Article  CAS  PubMed  Google Scholar 

  19. Kacker R, Meeks JJ, Zhao L, Nadler RB (2008) Decreased stone-free rates after percutaneous nephrolithotomy for high calcium phosphate composition kidney stones. J Urol 180:958–960

    Article  CAS  PubMed  Google Scholar 

  20. Kuo RL, Lingeman JE, Evan AP, Paterson RF, Parks JH, Bledsoe SB et al (2003) Urine calcium and volume predict coverage of renal papilla by Randall’s plaque. Kidney Int 64:2150–2155

    Article  PubMed  Google Scholar 

  21. Kaude JV, Williams CM, Millner MR, Scott KN, Finlayson B (1985) Renal morphology and function immediately after extracorporeal shock wave lithotripsy. Am J Roentgenol 145:305–313

    CAS  Google Scholar 

  22. Connors BA, Evan AP, Willis LR, Blomgren PM, Lingeman JE, Fineberg NS (2000) The effect of discharge voltage on renal injury and impairment caused by lithotripsy in the pig. J Am Soc Nephrol 11:310–318

    CAS  PubMed  Google Scholar 

  23. Evan AP, Willis LR, Lingeman JE, McAteer JA (1998) Renal trauma and the risk of long-term complications in shock wave lithotripsy. Nephron 78:1–8

    Google Scholar 

  24. Hamm LL, Alpern R (1980) Cellular mechanisms of renal tubular acidification. In: Seldin DW, Giebisch G (eds) The kidney: physiology and pathophysiology, 2nd edn. Raven Press, New York, p 2581

    Google Scholar 

  25. Krambeck AE, Gettman MT, Rohlinger AL, Lohse CM, Patterson DE, Segura JW (2006) Diabetes mellitus and hypertension associated with shock wave lithotripsy at 19 years follow-up. J Urol 175:1742–1747

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy E. Krambeck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krambeck, A.E., Handa, S.E., Evan, A.P. et al. Brushite stone disease as a consequence of lithotripsy?. Urol Res 38, 293–299 (2010). https://doi.org/10.1007/s00240-010-0289-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-010-0289-y

Keywords

Navigation