Skip to main content
Log in

A Re-Assessment of Positive Selection on Mitochondrial Genomes of High-Elevation Phrynocephalus Lizards

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Due to their integral roles in oxidative phosphorylation, mitochondrially encoded proteins represent common targets of selection in response to altitudinal hypoxia across high-altitude taxa. While previous studies revealed evidence of positive selection on mitochondrial genomes of high-altitude Phrynocephalus lizards, their conclusions were restricted by out-of-date phylogenies and limited taxonomic sampling. Using topologies derived from both nuclear and mitochondrial DNA phylogenies, we re-assessed the evidence of positive selection on the mitochondrial genomes of high-altitude Phrynocephalus. We sampled representative species from all four main lineages and sequenced the mitochondrial genome of P. maculatus, a putative sister taxon to the high-altitude group. Positive selection was assessed through two widely used branch-site tests: the branch-site model in PAML and BUSTED in HyPhy. No evidence of positive selection on mitochondrial genes was detected on branches leading to two most recent common ancestors of high-altitude species; however, we recovered evidence of positive selection on COX1 on the P. forsythii branch, which represents a reversal from high- to low-elevation environments. A positively selected site therein marked a threonine to valine substitution at position 419. We suggest this bout of selection occurred as the ancestors of P. forsythii re-colonized lower altitude environments north of the Tibetan Plateau. Despite their role in oxidative phosphorylation, we posit that mitochondrial genes are unlikely to have represented historical targets of selection for high-altitude adaptation in Phrynocephalus. Consequently, future studies should address the roles of nuclear genes and differential gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All sequences generated in this study have been deposited in GenBank (Accession Number: MW007749).

Abbreviations

OXPHOS:

Oxidative phosphorylation

nuDNA:

Nuclear DNA

mtDNA:

Mitochondrial DNA

MRCA:

Most recent common ancestor

bp:

Base pairs

dN:

Nonsynonymous substitution

dS:

Synonymous substitution

LRT:

Likelihood ratio test

BEB:

Bayes Empirical Bayes

P b :

Posterior probability

PROVEAN:

Protein Variation Effect Analyzer

ND:

NADH Dehydrogenase

References

  • Bauwens D, Hertz PE, Castilla AM (1996) Thermoregulation in a lacertid lizard: the relative contributions of distinct behavioral mechanisms. Ecology 77(6):1818–1830

    Article  Google Scholar 

  • Chen D, Zhou T, Guo X (2016) The complete mitochondrial genome of Phrynocephalus forsythii (Reptilia, Squamata, Agamidae), a toad-headed agama endemic to the Taklamakan Desert. Mitochondrial DNA A DNA Mapp Seq Anal 27(6):4046–4048

    CAS  PubMed  Google Scholar 

  • Cheviron ZA, Brumfield RT (2012) Genomic insights into adaptation to high-altitude environments. Heredity (Edinb) 108(4):354–361

    Article  CAS  Google Scholar 

  • Choi Y, Chan AP (2015) PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31(16):2745–2747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi Y, Sims GE, Murphy S, Miller JR, Chan AP (2012) Predicting the functional effect of amino acid substitutions and indels. PLoS One 7(10):e46688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5:113

    Article  Google Scholar 

  • Ferguson GW, Gehrmann WH, Brinker AM, Kroh GC (2014) Daily and seasonal patterns of natural ultraviolet light exposure of the western sagebrush lizard (Sceloporus graciosus gracilus) and the dunes sagebrush lizard (Sceloporus arenicolus). Herpetologica 70(1):56–68

    Article  Google Scholar 

  • Geisler CE, Kentch KP, Renquist BJ (2017) Non-mammalian vertebrates: distinct models to assume the role of ion gradients in energy expenditure. Front Endocrinol (Lausanne) 8:224

    Article  Google Scholar 

  • Guo X, Wang Y (2007) Partitioned Bayesian analyses, dispersal-vicariance analysis, and the biogeography of Chinese toad-headed lizards (Agamidae: Phrynocephalus): a re-evaluation. Mol Phylogenet Evol 45:643–662

    Article  CAS  PubMed  Google Scholar 

  • Hassanin A, Ropiquet A, Couloux A, Cruaud C (2009) Evolution of the mitochondrial genome in mammals living at high altitude: new insights from a study of the tribe Caprini (Bovidae, Antilopinae). J Mol Evol 68(4):293–310

    Article  CAS  PubMed  Google Scholar 

  • Hughes AL (2007) Looking for Darwin in all the wrong places: the misguided quest for positive selection at the nucleotide sequence level. Heredity 99:364–373

    Article  CAS  PubMed  Google Scholar 

  • Jin YT, Brown RP (2013) Species history and divergence times of viviparous and oviparous Chinese toad-headed sand lizards (Phrynocephalus) on the Qinghai-Tibetan Plateau. Mol Phylogenet Evol 68:259–268

    Article  PubMed  Google Scholar 

  • Jin Y, Wo Y, Tong H, Song S, Zhang L, Brown RP (2018) Evolutionary analysis of mitochondrially encoded proteins of toad-headed lizards, Phrynocephalus, along an altitudinal gradient. BMC Genomics 19:185

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin Y, Brandt DYC, Li J, Wo Y, Tong H, Shchur V (2020) Elevation as a selective force on mitochondrial respiratory chain complexes of the Phrynocephalus lizards in the Tibetan plateau. Curr Zool zoaa056

  • Kondrashov FA (2012) Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc Royal Soc B 279:5048–5057

    Article  Google Scholar 

  • Kosakovsky Pond SL, Frost SDW, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21(5):676–679

    Article  Google Scholar 

  • Kryazhimskiy S, Plotkin JB (2008) The population genetics of dN/dS. PLoS Genet 4(12):e1000304

    Article  PubMed  PubMed Central  Google Scholar 

  • Li N, Yang W, Fu J (2015) High-altitude adaptation of genus Phrynocephalus based on mitochondrial genome. Sich J Zool 34(6):810–816

    Google Scholar 

  • Li XD, Jiang GF, Yan LY, Li R, Mu Y, Deng WA (2018) Positive selection drove the adaptation of mitochondrial genes to the demands of flight and high-altitude environments in grasshoppers. Front Genet 9:606

    Article  Google Scholar 

  • López-Maury L, Marguerat S, Bähler J (2008) Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nat Rev Genet 9(8):583–593

    Article  PubMed  Google Scholar 

  • Lotterhos KE, Whitlock MC (2014) Evaluation of demographic history and neutral parameterization on the performance of FST outlier tests. Mol Ecol 23(9):2178–2192

    Article  PubMed  PubMed Central  Google Scholar 

  • Macey JR, Schulte JA II, Ananjeva NB, Van Dyke ET, Wang Y, Orlov N et al (2018) A molecular phylogenetic hypothesis for the Asian agamid lizard genus Phrynocephalus reveals discrete biogeographic clades implicated by plate tectonics. Zootaxa 4467(1):1–81

    Article  PubMed  Google Scholar 

  • Maddison WP, Maddison DR (2017) Mesquite: a modular system for evolutionary analysis. Version 3.31. http://www.mesquiteproject.org

  • Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Kosakovsky Pond SL (2012) Detecting individual sites subject to episodic diversifying selection. PLoS Genet 8(7):e1002764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murrell B, Weaver S, Smith MD, Wertheim JO, Murrell S, Aylward A et al (2015) Gene-wide identification of episodic selection. Mol Bio Evol 32(5):1365–1371

    Article  CAS  Google Scholar 

  • Nicholls DG, Ferguson SJ (2013) Bioenergetics. Academic Press, Cambridge, MA

    Google Scholar 

  • Noble DWA, Qi Y, Fu J (2010) Species delineation using Bayesian model-based assignment tests: a case study using Chinese toad-headed agamas (genus Phrynocephalus). BMC Evol Biol 10:197

    Article  PubMed  PubMed Central  Google Scholar 

  • Nozawa M, Suzuki Y, Nei M (2009) Reliabilities of identifying positive selection by the branch-site and the site-prediction methods. PNAS 106(16):6700–6705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pruitt KD, Tatusova T, Klimke W, Maglott DR (2012) NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res 40(Database Issue):D130–135

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York, p 385

    Google Scholar 

  • Scott GR, Schulte PM, Egginton S, Scott AL, Richards JG, Millsom WK (2011) Molecular evolution of cytochrome c oxidase underlies high-altitude adaptation in the bar-headed goose. Molec Biol Evol 28(1):351–363

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Hu Y, Wang J, Elzo MA, Yang X, Lai S (2018) Genetic diversities of MT-ND1 and MT-ND2 genes are associated with high-altitude adaptation in yak. Mitochondrial DNA A DNA Mapp Seq Anal 29(3):485–494

    PubMed  Google Scholar 

  • Sinsch U (1989) Behavioural thermoregulation of the Andean toad (Bufo spinulosus) at high altitudes. Oecologia 80(1):32–38

    Article  CAS  PubMed  Google Scholar 

  • Solovyeva EN, Poyarkov NA, Dunayev EA, Nazarov RA, Lebedev VS, Bannikova AA (2014) Dokl Biol Sci 455:119–124

    Article  CAS  PubMed  Google Scholar 

  • Solovyeva EN, Lebedev VS, Dunayev EA, Nazarov RA, Bannikova AA, Che J, Murphy RW, Poyarkov NA (2018) Cenozoic aridization in central Eurasia shaped diversification of toad-headed agamas (Phrynocephalus; Agamidae, Reptilia). PeerJ 6:e4543

    Article  PubMed  PubMed Central  Google Scholar 

  • Soltoff SP (1986) ATP and the regulation of renal cell function. Annu Rev Physiol 48:9–13

    Article  CAS  PubMed  Google Scholar 

  • Storz JF, Moriyama H (2008) Mechanisms of hemoglobin adaptation to high altitude hypoxia. High Alt Med Biol 9(2):148–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swofford, DL (2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4a164. Sinauer Associates, Sunderland, MA

  • Tang X, Ying X, Wang H, Li W, Zhang Y, Liang S et al (2013) Metabolic characteristics and response to high altitude in Phrynocephalus erythrurus (Lacertilia: Agamidae), a lizard dwell at altitudes higher than any other living lizards in the world. PLoS One 8(8):e71976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urquhart J, Wang Y, Fu J (2009) Historical vicariance and male-mediated gene flow in the toad-headed lizards Phrynocephalus przewalskii. Mol Ecol 18(17):3714–3729

    Article  CAS  PubMed  Google Scholar 

  • Wertheim JO, Murrell B, Smith MD, Kosakovsky Pond SL, Scheffler K (2015) RELAX: detecting relaxed selection in a phylogenetic framework. Mol Biol Evol 32(3):820–832

    Article  CAS  PubMed  Google Scholar 

  • Yang Z. PAML FAQ. 2005. http://abacus.gene.ucl.ac.uk/software/pamlFAQs.pdf. Accessed 15 Jan 2020.

  • Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Bio Evol 24(8):1586–1591

    Article  CAS  Google Scholar 

  • Yang Z, dos Reis M (2011) Statistical properties of the branch-site test of positive selection. Mol Biol Evol 28(3):1217–1228

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Nielsen R (2002) Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Bio Evol 19(6):908–917

    Article  CAS  Google Scholar 

  • Yang Z, Wong WSW, Nielsen R (2005) Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Yin Q, Fu J (2014) Exploring the genetic basis of adaptation to high elevations in reptiles: a comparative transcriptome analyses of two toad-headed agamas (genus Phrynocephalus). PLoS One 9(11):e112218

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu L, Wang X, Ting N, Zhang Y (2011) Mitogenomic analysis of Chinese snub-noised monkeys: evidence of positive selection in NADH dehydrogenase genes in high-altitude adaptation. Mitochondrion 11(3):497–503

    Article  CAS  PubMed  Google Scholar 

  • Yuan ML, Zhang QL, Zhang L, Jia CL, Li XP, Yang XZ, Feng RQ (2018) Mitochondrial phylogeny: divergence history and high-altitude adaptation of grassland caterpillars (Lepidopetera: Lymantriinae: Gynaephora) inhabiting the Tibetan Plateau. Mol Phylogenet Evol 122:116–124

    Article  PubMed  Google Scholar 

  • Zhang J, Nielsen R, Yang Z (2005) Evaluation of an improved likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 22(12):2472–2479

    Article  CAS  PubMed  Google Scholar 

  • Zhou T, Shen X, Irwin DM, Shen Y, Zhang Y (2014) Mitogenomic analyses propose positive selection in mitochondrial genes for high-altitude adaptation in galliform birds. Mitochondrion 18:70–75

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Daniel Melnikov for providing tissue samples, Sarah Ouellet for her contributions to the initial stages of lab work, and Dr. Teresa J. Crease for her thoughtful comments on the early manuscript drafts. Sequencing was conducted at the AAC Genomics Facility at the University of Guelph.

Funding

This project is funded by Natural Sciences and Engineering Research Council of Canada (NSERC Canada) (Discovery Grant Number 400479 to JF).

Author information

Authors and Affiliations

Authors

Contributions

JEA contributed lab work, statistical analyses and drafted the manuscript. JF designed the study, contributed lab work, and edited the manuscript. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Jared E. Atlas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval and Consent to Participate

All animal utility protocols are approved by the Animal Care Committee of the University of Guelph (AUP#3886).

Additional information

Handling editor: William Murphy.

Supplementary Information

Below is the link to the electronic supplementary material.

(pdf 46 kb)

(pdf 51 kb)

(pdf 43 kb)

(pdf 131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atlas, J.E., Fu, J. A Re-Assessment of Positive Selection on Mitochondrial Genomes of High-Elevation Phrynocephalus Lizards. J Mol Evol 89, 95–102 (2021). https://doi.org/10.1007/s00239-020-09991-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-020-09991-9

Keywords

Navigation