Skip to main content
Log in

More Pieces of Ancient than Recent Theoretical Minimal Proto-tRNA-Like RNA Rings in Genes Coding for tRNA Synthetases

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Theoretical minimal RNA rings were designed to mimick life’s primordial RNAs by forming stem-loop hairpins and coding once for each of the 20 amino acids, a start and a stop codon. At most 25 22-nucleotide long RNA rings follow these criteria. These align well with a consensus tRNA sequence, predicting for each RNA ring an anticodon and an associated cognate amino acid. Hypotheses on cognate amino acid order of inclusion in the genetic code produce evolutionary ranks for theoretical RNA rings. This evolutionary hypothesis predicts that pieces of RNA rings with more ancient cognate amino acid should be more frequent in modern genes than those from RNA rings with late cognate amino acids. Analyses of genes for tRNA synthetases, among the most ancient proteins, from archaeal, bacterial, eukaryote and viral superkingdoms overall confirm these predictions, least for tRNA synthetases with early cognate amino acids and for the neogene-enriched genome of the giant virus Tupanvirus. Hence early tRNA synthetase genes and late RNA rings evolved separately. Results indicate that RNA rings and tRNA synthetases with the same cognate amino acid are less separated for relatively recent cognate amino acids, suggesting that over evolutionary time the components of the molecular apparatus became more integrated, perhaps in cell-like membrane-bound systems. Results confirm that theoretical considerations in the design of minimal RNA rings recreated RNAs close to the actual primordial RNA population that produce genes by accretion, and confirm the hypothesis of homology of minimal RNA rings with tRNAs and their proto-tRNA status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrahão J, Silva L, Silva LS, Khalil JYB, Rodrigues R, Arantes T, Assis F, Boratto P, Andrade M, Kroon EG, Ribeiro B, Bergier I, Seligmann H, Ghigo E, Colson P, Levasseur A, Kroemer G, Raoult D, La Scola B (2018) Tailed giant Tupanvirus possesses the most complete translational apparatus of the known virosphere. Nat Commun 9:749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agmon I (2009) The dimeric proto-ribosome: structural details and possible implications on the origin of life. Int J Mol Sci 10:2921–2934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida L, Demongeot J (2012) Predictive power of “a minima” models in biology. Acta Biotheor 60:3–19

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 125:3389–3402

    Article  Google Scholar 

  • Aziz MF, Caetano-Anolles K, Caetano-Anolles G (2016) The early history and emergence of molecular functions and modular scale-free network behavior. Sci Rep 6:25058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett SP, Salzman J (2016) Circular RNAs: analysis, expression and potential functions. Development 143:1838–1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barthélémy RM, Seligmann H (2016) Cryptic tRNAs in chaetognath mitochondrial genomes. Comput Biol Chem 62:119–132

    Article  CAS  PubMed  Google Scholar 

  • Bartnik E, Borsuk P (1986) A glycine tRNA gene from lupine mitochondria. Nucleic Acids Res 14:2407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartonek L, Zagrovic B (2017) mRNA/protein sequence complementarity and its determinants: the impact of affinity scales. PLoS Comput Biol 13:e1005648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloch DP, McArthur B, Widdowson R, Spector D, Guimarães RC, Smith J (1983) tRNA-rRNA sequence homologies: evidence for a common evolutionary origin? J Mol Evol 19:420–428

    Article  CAS  PubMed  Google Scholar 

  • Bloch DP, McArthur B, Widdowson R, Spector D, Guimarães RC, Smith J (1984) tRNA-rRNA sequence homologies: a model for the origin of a common ancestral molecule, and prospects for its reconstruction. Orig Life 14:571–578

    Article  CAS  PubMed  Google Scholar 

  • Bloch DP, McArthur B, Guimarães RC, Smith J, Staves MP (1989) tRNA-rRNA sequence matches from inter- and intraspecies comparisons suggest common origins for the two RNAs. Braz J Med Biol Res 22:931–944

    CAS  PubMed  Google Scholar 

  • Brown JR, Doolittle WF (1995) universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications. Proc Natl Acad Sci USA 92:2441–2445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caetano-Anollés D, Caetano-Anollés G (2016) Piecemeal buildup of the genetic code, ribosomes, genomes from primordial tRNA building blocks. Life (Basel) 6:e43

    Google Scholar 

  • Caetano-Anollés G, Nasir A (2012) Benefits of using molecular structure and abundance in phylogenomic analysis. Front Genet 3:172

    PubMed  PubMed Central  Google Scholar 

  • Caetano-Anollés G, Sun F-J (2014) The natural history of transfer RNA and its interactions with the ribosome. Front Genet 5:127

    PubMed  PubMed Central  Google Scholar 

  • Caetano-Anollés G, Mittenthal JE, Caetano-Anollés D, Kim KM (2014) A calibrated chronology of biochemistry reveals a stem line of descent responsible for planetary biodiversity. Front Genet 5:306

    PubMed  PubMed Central  Google Scholar 

  • Colson P, La Scola B, Raoult D (2017) Giant viruses of amoeba: a journey through innovative research and paradigm changes. Annu Rev Virol 4:48–61

    Article  CAS  Google Scholar 

  • Colson P, Levasseur A, La Scola B, Sharma V, Nasir A, Pontarotti P, Caetano-Anollés Raoult D (2018) Ancestrality and mosaicism of giant viruses supporting the definition of the fourth TRUC of microbes. Front Microbiol 9:2668

    Article  PubMed  PubMed Central  Google Scholar 

  • Demongeot J (1978) Sur la possibilité de considérer le code génétique comme un code à enchaînement. Rev Biomath 62:61–66

    CAS  Google Scholar 

  • Demongeot J, Besson J (1983) Genetic-code and cyclic codes. C R Acad des Sci III 296:807–810

    CAS  Google Scholar 

  • Demongeot J, Hazgui H (2016) The Poitiers school of mathematical and theoretical biology: Besson-Gavaudan-Schützenberger’s conjectures on genetic code and RNA structures. Acta Biotheor 64:403–426

    Article  CAS  PubMed  Google Scholar 

  • Demongeot J, Moreira A (2007) A possible circular RNA at the origin of life. J Theor Biol 249:314–324

    Article  CAS  PubMed  Google Scholar 

  • Demongeot J, Glade N, Moreira A (2008) Evolution and RNA relics. A systems biology view. Acta Biotheor 56:5–25

    Article  PubMed  Google Scholar 

  • Dufton MJ (1997) Genetic code synonym quotas and amino acid complexity: cutting the cost of proteins? J Theor Biol 187:165–173

    Article  CAS  PubMed  Google Scholar 

  • Eigen M, Winkler-Oswatitsch R (1981a) Tranfer-RNA: the early adaptor. Naturwissenschaften 68:217–228

    Article  CAS  PubMed  Google Scholar 

  • Eigen M, Winkler-Oswatitsch R (1981b) Transfer-RNAS, and early gene? Naturwissenschaften 68:282–292

    Article  CAS  PubMed  Google Scholar 

  • Eriani G, Delarue M, Poch O, Gangloff J, Moras D (1990) Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347:203–206

    Article  CAS  PubMed  Google Scholar 

  • Faure R, Barthélémy RM (2018) True mitochondrial tRNA punctuation and initiation using overlapping stop and start codons at specific and conserved positions. In: Seligmann H (ed) Mitochondrial DNA. IntechOpen, London. https://doi.org/10.5772/intechopen.75555

    Chapter  Google Scholar 

  • Faure E, Delaye L, Tribolo S, Levasseur A, Seligmann H, Barthélémy RM (2011) 2011 Probable presence of an ubiquitous cryptic mitochondrial gene on the antisense strand of the cytochrome oxidase I gene. Biol Direct 6:56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher RA (1948) Questions and answers #14. Am Stat 2:30–31

    Google Scholar 

  • Geyer R, Madany MA (2018) On the efficiency of the genetic code after frameshift mutations. PeerJ 6:e4825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guimarães RC (2011) Metabolic basis for the self-referential genetic code. Orig Life Evol Biosph 41:357–371

    Article  CAS  PubMed  Google Scholar 

  • Guimarães RC (2014) Essentials in the life process indicated by the self-referential genetic code. Orig Life Evol Biosph 44:269–277

    Article  CAS  PubMed  Google Scholar 

  • Guimarães RC (2015) The self-referential genetic code is biologic and includes the error minimization property. Orig Life Evol Biosph 45:69–75

    Article  CAS  PubMed  Google Scholar 

  • Guimarães RC (2017) Self-referential encoding on modules of anticodon pairs—roots of the biological flow system. Life 7:16

    Article  CAS  Google Scholar 

  • Guimarães RC, Moreira CH, de Farias ST (2008) A self-referential model for the formation of the genetic code. Theory Biosci 127:249–270

    Article  CAS  PubMed  Google Scholar 

  • Han DX, Wang HY, Ji ZL (2010) Amino acid homochirality may be linked to the origin of phosphate-based life. J Mol Evol 70:577–582

    Article  CAS  Google Scholar 

  • Hartman H (1995) Speculations on the origin and evolution of the genetic code. J Mol Evol 40:541–544

    Article  CAS  PubMed  Google Scholar 

  • Hecht A, Glasgow J, Jaschke PR, Bawazer LA, Munson MS, Cochran JR, Endy D, Salit M (2017) Measurements of translation initiation from all 64 codons in E. coli. Nucleic Acids Res 45:3615–3626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornos JEM, Hornos YMM (1993) Algebraic model for the evolution of the genetic code. Phys Rev Lett 71:4401–4404

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Yang B, Chen BJ, Bliim N, Ueberham U, Arendt T, Janitz M (2017) The emerging role of circular RNAs in transcriptome regulation. Genomics 109:401–407

    Article  CAS  PubMed  Google Scholar 

  • Itzkovitz S, Alon U (2007) The genetic code is nearly optimal for allowing information within protein-coding sequences. Genome Res 17:405–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson DBF, Wang L (2010) Imprints of the genetic code in the ribosome. Proc Natl Acad Sci USA 107:8298–8303

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim KM, Nasir A, Caetano-Anollés G (2014a) The importance of using realistic evolutionary models for retrodicting proteomes. Biochimie 99:129–137

    Article  CAS  PubMed  Google Scholar 

  • Kim KM, Nasir A, Hwang K, Caetano-Anollés G (2014b) A tree of cellular life inferred from a genomic census of molecular functions. J Mol Evol 79:240–262

    Article  CAS  PubMed  Google Scholar 

  • Kitada S, Uchiyama T, Funatsu T, Kitada Y, Ogishima T, Ito A (2007) A protein from a Parasitic Microorganism, Rickettsia prowazekii, can cleave the signal sequences of proteins targeting mitochondria. J Bacteriol 189:844–850

    Article  CAS  PubMed  Google Scholar 

  • Koç I, Caetano-Anollés G (2017) The natural history of molecular functions inferred from an extensive phylogenomic analysis of gene ontology data. PLoS ONE 12:e0176129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar B, Saini S (2016) Analysis of the optimality of the standard genetic code. Mol BioSystems 12:2642–2651

    Article  CAS  Google Scholar 

  • Lasda E, Parker R (2014) Circular RNAs: diversity of form and function. RMA 20:1829–1842

    CAS  Google Scholar 

  • Legendre M, Fabre E, Poirot O, Jeudy S, Lartigue A, Alempic JM, Beucher L, Philippe N, Bertaux L, Christo-Foroux E, Labadie K, Couté Y, Abergel C, Claverie JM (2018) Diversity and evolution of the emerging Pandoraviridae family. Nat Commun 9:2285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandler O, Santini T, Andronache A, Wade M, Laneve P, Rajewsky N, Bozzoni I (2017) Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell 66:22–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michel CJ, Seligmann H (2014) Bijective transformation circular codes and nucleotide exchanging RNA transcription. Biosystems 118:39–50

    Article  CAS  PubMed  Google Scholar 

  • Miller SL (1953) Production of amino acids under possible primitive earth conditions. Science 117:528–529

    Article  CAS  PubMed  Google Scholar 

  • Miller SL, Urey HC (1959) Organic compound synthesis on the primitive earth. Science 130:245–251

    Article  CAS  PubMed  Google Scholar 

  • Nagel GM, Doolittle RF (1991) Evolution and relatedness in two aminoacyl-tRNA synthetase families. Proc Natl Acad Sci USA 88:8121–8124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nasir A, Caetano-Anollés G (2015) A phylogenomic data-driven exploration of viral origins and evolution. Sci Adv 1:e1500527

    Article  PubMed  PubMed Central  Google Scholar 

  • Nasir A, Kim KM, Caetano-Anollés G (2014) A phylogenomic census of molecular functions identifies modern thermophilic archaea as the most ancient form of cellular life. Archaea 2014:706468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nasir A, Kim KM, Caetano-Anollés G (2017) Phylogenetic tracings of proteome size support gradual accretion of protein structural domains and the early origin of viruses from primordial cells. Front Microbiol 8:1178

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelsestuen GL (1978) Amino-acid directed nucleic acid synthesis. A possible mechanism in the origin of life. J Mol Evol 11:109–120

    Article  CAS  PubMed  Google Scholar 

  • Nicolet BP, Engels S, Aglialoro F, van den Akker E, von Lindern M, Wolkers MC (2018) Circular RNA expression in human hematopoietic cells is widespread and cell-type specific. Nucleic Acids Res 46:8168–8180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Opuu V, Silvert M, Simonson T (2017) Computational design of fully overlapping coding schemes for protein pairs and triplets. Sci Rep 7:15873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E, Perez-Hernandez D, Ramberger E, Shenzis S, Samson M, Dittmar G, Landthaler M, Chekulaeva M, Rajewsky N, Kadener S (2017) Translation of circRNA. Mol Cell 66:9–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan T, Gutell RR, Uhlenbeck OC (1991) Folding of circularly permuted transfter RNAs. Science 254:1361–1364

    Article  CAS  PubMed  Google Scholar 

  • Pelc SR (1965) Correlation between coding-triplets and amino acids. Nature 207:597–599

    Article  CAS  PubMed  Google Scholar 

  • Pelc SR, Welton MGE (1966) Stereochemical relationship between coding triplets and amino-acids. Nature 209:868–870

    Article  CAS  PubMed  Google Scholar 

  • Root-Bernstein M, Root-Bernstein R (2015) The ribosome as a missing link in the evolution of life. J Theor Biol 367:130–158

    Article  CAS  PubMed  Google Scholar 

  • Root-Bernstein R, Root-Bernstein M (2016) The ribosome as a missing link in prebiotic evolution II: ribosomes encode ribosomal proteins that bind to common regions of their own mRNAs and rRNAs. J Theor Biol 397:115–127

    Article  CAS  PubMed  Google Scholar 

  • Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE 7:e30733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schimmel P, Ribas De Pouplana L (2000) Footprints of aminoacyl-tRNA synthetases are everywhere. Trends Biochem Sci 25:207–209

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H (2011) Two genetic codes, one genome: frameshifted primate mitochondrial genes code for additional proteins in presence of antisense antitermination tRNAs. Biosystems 105:271–285

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H (2012a) An overlapping genetic code for frameshifted overlapping genes in Drosophila mitochondria: antisense antitermination tRNAs UAR insert serine. J Theor Biol 298:51–76

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H (2012b) Coding constraints modulate chemically spontaneous mutational replication gradients in mitochondrial genomes. Curr Genomics 13:37–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seligmann H (2012c) Overlapping genetic code for overlapping frameshifted genes in Testudines, and Lepidochelys olivacea as special case. Comput Biol Chem 41:18–34

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H (2012d) Positive and negative cognate amino acid bias affects compositions of aminoacyl-tRNA synthetases and reflects functional constraints on protein structure. BIO 2:11–26

    Article  Google Scholar 

  • Seligmann H (2015) Codon expansion and systematic transcriptional deletions produce tetra-, pentacoded mitochondrial peptides. J Theor Biol 387:154–165

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H (2016) Translation of mitochondrial swinger RNAs according to tri-, tetra- and pentacodons. Biosystems 140:38–48

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H (2018a) Directed mutations recode mitochondrial genes: from regular to stopless genetic codes. In: Seligmann H (ed) Mitochondrial DNA-new insights. IntechOpen, London. https://doi.org/10.5772/intechopen.80871

    Chapter  Google Scholar 

  • Seligmann H (2018b) Protein sequences recapitulate genetic code evolution. Comput Struct Biotechnol J 16:177–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seligmann H (2018c) Giant viruses as protein-coated mitochondria? Virus Res 253:77–86

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H, Raoult D (2016) Unifying view of stem-loop hairpin RNA as origin of current and ancient parasitic and non-parasitic RNAs, including in giant viruses. Curr Opin Microbiol 31:1–8

    Article  CAS  PubMed  Google Scholar 

  • Seligmann H, Raoult D (2018) Stem-loop RNA hairpins in giant viruses: invading rRNA-like repeats and a template free RNA. Front Microbiol 9:101

    Article  PubMed  PubMed Central  Google Scholar 

  • Soma A, Onodera A, Sugahara J, Kanai A, Yachie N, Tomita M, Kawamura F, Sekine Y (2007) Permuted tRNA genes expressed via a circular RNA intermediate in Cyanidioschyzon merolae. Science 318:450–453

    Article  CAS  PubMed  Google Scholar 

  • Trifonov EN (2000) Consensus temporal order of amino acids and evolution of the triplet code. Gene 261:139–151

    Article  CAS  PubMed  Google Scholar 

  • Trifonov EN (2004) The triplet code from first principles. J Biomol Struct Dynamics 22:1–11

    Article  CAS  Google Scholar 

  • Wang M, Jiang YY, Kim KM, Qu G, Ji HF, Mittenthal JE, Zhang HY, Caetano-Anollés G (2011) A universal molecular clock of protein folds and its power in tracing the early history of aerobic metabolism and planet oxygenation. Mol Biol Evol 28:567–582

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wang X, Chen G, Zhang J, Liu Y, Yang C (2015) The shiftability of protein coding genes: the genetic code was optimized for frameshift tolerating. PeerJ 3:e806v1

    Google Scholar 

  • Wang X, Dong Q, Chen G, Zhang J, Liu Y, Zhao J, Peng H, Wang Y, Cai Y, Wang X, Yang C, Lynch M (2016) The universal genetic code, protein coding genes and genomes of all species were optimized for frameshift tolerance. bioRxiv. https://doi.org/10.1101/067736

    Article  Google Scholar 

  • Woese C (2002) On the evolution of cells. Proc Natl Acad Sci USA 99:8742–8747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong JTF (1975) A co-evolution theory of the genetic code. Proc Natl Acad Sci USA 72:1909–1912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong JTF (2005) The coevolution hypothesis at age thirty. BioEssays 27:416–426

    Article  CAS  PubMed  Google Scholar 

  • Yarus M (2017) The genetic code and RNA-amino acid affinities. Life (Basel) 7:13

    Google Scholar 

  • Yarus M, Christian EL (1989) Genetic code origins. Nature 342:349–350

    Article  CAS  PubMed  Google Scholar 

  • Yarus M, Widmann JJ, Knight R (2009) RNA-amino acid binding: a stereochemical era for the genetic code. J Mol Evol 69:406–429

    Article  CAS  PubMed  Google Scholar 

  • Zagrovic B, Bartonek L, Polyansky AA (2018) RNA-protein interactions in an unstructured context. FEBS Lett 592:2901–2916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Xue W, Li X, Zhang J, Chen S, Zhang JL, Yang L, Chen LL (2016) The biogenesis of nascent circular RNAs. Cell Rep 15:611–624

    Article  CAS  PubMed  Google Scholar 

  • Zhong Y, Du Y, Yang X, Mo Y, Fan C, Xiong F, Ren D, Ye X, Li C, Wang Y, Wei F, Guo C, Wu X, Li X, Li Y, Li G, Zeng Z, Xiong W (2018) Circular RNAs function as ceRNAs to regulate and control human cancer progression. Mol Cancer 17:79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers for highly valuable constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Demongeot.

Additional information

Handling Editor: Yoshiya Ikawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demongeot, J., Seligmann, H. More Pieces of Ancient than Recent Theoretical Minimal Proto-tRNA-Like RNA Rings in Genes Coding for tRNA Synthetases. J Mol Evol 87, 152–174 (2019). https://doi.org/10.1007/s00239-019-09892-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-019-09892-6

Keywords

Navigation