Skip to main content
Log in

The Isochores as a Fundamental Level of Genome Structure and Organization: A General Overview

  • Review Paper
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The recent availability of a number of fully sequenced genomes (including marine organisms) allowed to map very precisely the isochores, based on DNA sequences, confirming the results obtained before genome sequencing by the ultracentrifugation in CsCl. In fact, the analytical profile of human DNA showed that the vertebrate genome is a mosaic of isochores, typically megabase-size DNA segments that belong to a small number of families characterized by different GC levels. In this review, we will concentrate on some general genome features regarding the compositional organization from different organisms and their evolution, ranging from vertebrates to invertebrates until unicellular organisms. Since isochores are tightly linked to biological properties such as gene density, replication timing, and recombination, the new level of detail provided by the isochore map helped the understanding of genome structure, function, and evolution. All the findings reported here confirm the idea that the isochores can be considered as a “fundamental level of genome structure and organization.” We stress that we do not discuss in this review the origin of isochores, which is still a matter of controversy, but we focus on well established structural and physiological aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Modified from Costantini et al. 2009. (Color figure online)

Fig. 2

(Modified from Cammarano et al. 2009). (Color figure online)

Fig. 3

(Modified from Costantini et al. 2013). (Color figure online)

Similar content being viewed by others

References

  • Andreozzi L, Federico C, Motta S, Saccone S, Sazanova AL, Sazanov AA, Smirnov AF, Galkina SA, Lukina NA, Rodionov AV, Carels N, Bernardi G (2001) Compositional mapping of chicken chromosomes and identification of gene-richest regions. Chromosome Res 9:521–532

    Article  CAS  PubMed  Google Scholar 

  • Bernardi G (1965) Chromatography of nucleic acids on hydroxyapatite. Nature 206:779–783

    Article  CAS  PubMed  Google Scholar 

  • Bernardi G (2004) Structural and evolutionary genomics. Natural selection in genome evolution. Elsevier, Amsterdam

    Google Scholar 

  • Bernardi G (2007) The neo-selectionist theory of genome evolution. Proc Natl Acad Sci USA 104(20):8385–8390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardi G, Bernardi G (1986) Compositional constraints and genome evolution. J Mol Evol 24:1–11

    Article  CAS  PubMed  Google Scholar 

  • Bernardi G, Bernardi G (1990) Compositional patterns in the nuclear genomes of cold-blooded vertebrates. J Mol Evol 31:265–281

    Article  CAS  PubMed  Google Scholar 

  • Bowler C, Allen AE, Badger JH et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244

    Article  CAS  PubMed  Google Scholar 

  • Britten RJ, Kohne DE (1968) Repeated sequences in DNA. Science 161:529–540

    Article  CAS  PubMed  Google Scholar 

  • Cammarano R, Costantini M, Bernardi G (2009) The isochore patterns of invertebrate genomes. BMC Genomics 10:538

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen NT, Dagan L, Graur D (2005) GC composition of the human genome: In search of isochores. Mol Biol Evol 22:1260–1272

    Article  CAS  PubMed  Google Scholar 

  • Corneo G, Ginelli E, Soave C, Bernardi G (1968) Isolation and characterization of mouse and guinea pig satellite deoxyribonucleic acids. Biochemistry 7(12):4373–4379

    Article  CAS  PubMed  Google Scholar 

  • Costantini M, Bernardi G (2008a) Replication timing, chromosomal bands and isochores. Proc Natl Acad Sci USA 105(9):3433–3437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costantini M, Bernardi G (2008b) The short-sequence design of isochores from the human genome. Proc Natl Acad Sci USA 105(37):13971–13976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costantini M, Clay O, Auletta F, Bernardi G (2006) An isochore map of human chromosomes. Genome Res 16(4):536–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costantini M, Di Filippo M, Auletta F, Bernardi G (2007a) Isochore pattern and gene distribution in the chicken genome. Gene 400:9–15

    Article  CAS  PubMed  Google Scholar 

  • Costantini M, Auletta F, Bernardi G (2007b) Isochore patterns and gene distributions in fish genomes. Genomics 90(3):364–371

    Article  CAS  PubMed  Google Scholar 

  • Costantini M, Clay O, Federico C, Saccone S, Auletta F, Bernardi G (2007c) Human chromosomal bands: nested structure, high-definition map and molecular basis. Chromosoma 116(1):29–40

    Article  CAS  PubMed  Google Scholar 

  • Costantini M, Cammarano R, Bernardi G (2009) The evolution of isochore patterns in vertebrate genomes. BMC Genomics 10:146

    Article  PubMed  PubMed Central  Google Scholar 

  • Costantini M, Alvarez-Valin F, Costantini S, Cammarano R, Bernardi G (2013) Compositional patterns in the genomes of unicellular eukaryotes. BMC Genomics 14:755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costantini M, Greif G, Alvarez-Valin F, Bernardi G (2016) The Anolis lizard genome: a genome without isochores? Genome Biol Evol 8:1048–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuny G, Soriano P, Macaya G, Bernardi G (1981) The major components of the mouse and human genomes: Preparation, basic properties and compositional heterogeneity. Eur J Biochem 111:227–233

    Article  Google Scholar 

  • de Luca di Roseto G, Bucciarelli G, Bernardi G (2002) An analysis of the genome of Ciona intestinalis. Gene 295:311–316

    Article  Google Scholar 

  • Dekker J (2007) GC- and AT-rich chromatin domains differ in conformation and histone modification status and are differentially modulated by Rpd3p. Genome Biol 8:R11615

    Article  Google Scholar 

  • Delsuc F, Brinkmann H, Chourrout D, Philippe H (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439:965–968

    Article  CAS  PubMed  Google Scholar 

  • Derelle E, Ferraz C, Rombauts S et al (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci USA 103:11647–11652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Filippo M, Bernardi G (2008) Mapping Dnase I-hypersensitive sites on human isochores. Gene 419:62–65

    Article  CAS  PubMed  Google Scholar 

  • Dickerson RE (1992) DNA structure from A to Z. Methods Enzymol 211:67–111

    Article  CAS  PubMed  Google Scholar 

  • Dujon B (1996) The yeast genome project: what did we learn? Trends Genet 12:263–270

    Article  CAS  PubMed  Google Scholar 

  • Duret L, Eyre-Walker A, Galtier N (2006) A new perspective on isochore evolution. Gene 385:71–74

    Article  CAS  PubMed  Google Scholar 

  • Eyre-Walker A, Hurst LD (2001) The evolution of isochores. Nat Rev Genet 2:549–555

    Article  CAS  PubMed  Google Scholar 

  • Filipski J, Thiery JP, Bernardi G (1973) An analysis of the bovine genome by Cs2SO4-Ag + density gradient centrifugation. J Mol Biol 80:177–197

    Article  CAS  PubMed  Google Scholar 

  • Häring D, Kypr J (2001) No isochores in the human chromosomes 21 and 22? Biochem Biophys Res Commun 280:567–573

    Article  PubMed  Google Scholar 

  • International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945

    Article  Google Scholar 

  • Isacchi A, Bernardi G, Bernardi G (1993) Compositional compartmentalization of the nuclear genomes of Trypanosoma brucei and Trypanosoma equiperdum. FEBS Lett 335:181–183

    Article  CAS  PubMed  Google Scholar 

  • Jabbari K, Bernardi G (2000) The distribution of genes in the Drosophila genome. Gene 247:287–292

    Article  CAS  PubMed  Google Scholar 

  • Jabbari K, Bernardi G (2004) Comparative genomics of Anopheles gambiae and Drosophila melanogaster. Gene 333:183–186

    Article  CAS  PubMed  Google Scholar 

  • Jabbari K, Bernardi G (2017) An isochore framework underlies chromatin architecture. PLoS One 12(1):e0168023

    Article  PubMed  PubMed Central  Google Scholar 

  • Kadi F, Mouchiroud D, Sabeur G, Bernardi G (1993) The compositional patterns of the avian genomes and their evolutionary implications. J Mol Evol 37:544–551

    Article  CAS  Google Scholar 

  • Karlin S, Blaisdell BE, Sapolsky RJ, Cardon L, Burge C (1993) Assessment of DNA in homogeneities in yeast chromosome III. Nucleic Acid Res 21:703–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katz LA, Grant JR, Parfey LW, Burleigh JG (2012) Turning the crown upside down: gene tree parsimony roots the eukaryotic tree of life. Syst Biol 61:653–660.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamolle G, Protasio A, Iriarte A, Jara E, Simón D, Musto H (2016) An sochore-like structure in the genome of the flatworm Schistosoma mansoni. Genome Biol Evol 8:2312–2318

    Article  PubMed  PubMed Central  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh WES et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  PubMed  Google Scholar 

  • Macaya G, Thiery JP, Bernardi G (1976) An approach to the organization of eukaryotic genomes at a macromolecular level. J Mol Biol 108:237–254

    Article  CAS  PubMed  Google Scholar 

  • McCutchan TF, Dame JB, Miller LH, Barnwell J (1984) Evolutionary relatedness of Plasmodium species as determined by the structure of DNA. Science 225:808–811

    Article  CAS  PubMed  Google Scholar 

  • Meselson M, Stahl FW, Vinograd J (1957) Equilibrium sedimentation of macromolecules in density gradients. Proc Natl Acad Sci USA 43:581–588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montero LM, Salinas J, Matassi G, Bernardi G (1990) Gene distribution and isochore organization in the nuclear genome of plants. Nucleic Acids Res 18(7):1859–1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musto H, Rodríguez-Maseda H, Bernardi G (1994) The nuclear genomes of African and American trypanosomes are strikingly different. Gene 141:63–69

    Article  CAS  PubMed  Google Scholar 

  • Musto H, Naya H, Zavala A, Romero H, Alvarez-Valín F, Bernardi G (2006) Genomic GC level, optimal growth temperature, and genome size in prokaryotes. Biochem Biophys Res Commun 18:347(1):1–3.

    Article  CAS  PubMed  Google Scholar 

  • Naya H, Romero H, Zavala A, Alvarez B, Musto H (2002) Aerobiosis increases the genomic guanine plus cytosine content (GC%) in prokaryotes. J Mol Evol 55(3):260–264

    Article  CAS  PubMed  Google Scholar 

  • Nekrutenko A, Li WH (2001) Assessment of compositional heterogeneity within and between eukaryotic genomes. Genome Res 10:1986–1995

    Article  Google Scholar 

  • Niimura Y, Gojobori T (2002) In silico chromosome staining: reconstruction of Giemsa bands from the whole human genome sequence. Proc Natl Acad Sci USA 99(2):797–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palenik B, Grimwood J, Aerts A et al (2007) The tin eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc Natl Acad Sci USA 104:7705–7710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollak Y, Katzen A, Spira D, Golenser J (1982) The genome of Plasmodium falciparum I: DNA composition. Nucleic Acid Res 10:539–546

    Article  Google Scholar 

  • Rodríguez-Maseda H, Musto H (1994) The compositional compartments of the nuclear genomes of Trypanosoma brucei and T. cruzi. Gene 151:221–224

    Article  PubMed  Google Scholar 

  • Romero H, Pereira E, Naya H, Musto H (2009) Oxygen and guanine-cytosine profiles in marine environments. J Mol Evol 69(2):203–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saccone S, Federico C, Andreozzi L, D’Antoni S, Bernardi G (2002) Localization of the gene-richest and the gene-poorest isochores in the interphase nuclei of mammals and birds. Gene 300:169–178

    Article  CAS  PubMed  Google Scholar 

  • Segal E, Fondufe-Mittendorf Y, Chen L, Thåström AC, Field Y, Moore YK, Wang JZ, Widom J (2006) A genomic code for nucleosome positioning. Nature 442:772–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp PM, Lloyd AT (1993) Regional base composition variation along yeast chromosome III: evolution of chromosome primary structure. Nucleic Acid Res 21:179–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiery JP, Macaya G, Bernardi G (1976) An analysis of eukaryotic genomes by density gradient centrifugation. J Mol Biol 108:219–235

    Article  CAS  PubMed  Google Scholar 

  • van Rheede T, Bastiaans T, Boone DN, Hedges SB, de Jong WW, Madsen O (2006) The platypus is in its place: nuclear genes and indels confirm the sister group relation of monotremes and Therians. Mol Biol Evol 23:587–597

    Article  PubMed  Google Scholar 

  • Zerial M, Salinas J, Filipski J, Bernardi G (1986) Gene distribution and nucleotide sequence organization in the human genome. Eur J Biochem 160:479–485

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Zhang CT (2004) Isochore structures in the genome of the plant Arabidopsis thaliana. J Mol Evol 59(2):227–238

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Giorgio Bernardi for his strong support in all the work cited in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Costantini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costantini, M., Musto, H. The Isochores as a Fundamental Level of Genome Structure and Organization: A General Overview. J Mol Evol 84, 93–103 (2017). https://doi.org/10.1007/s00239-017-9785-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-017-9785-9

Keywords

Navigation